當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.matrix_inverse方法代碼示例

本文整理匯總了Python中tensorflow.matrix_inverse方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_inverse方法的具體用法?Python tensorflow.matrix_inverse怎麽用?Python tensorflow.matrix_inverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_inverse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: backward_step_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def backward_step_fn(self, params, inputs):
        """
        Backwards step over a batch, to be used in tf.scan
        :param params:
        :param inputs: (batch_size, variable dimensions)
        :return:
        """
        mu_back, Sigma_back = params
        mu_pred_tp1, Sigma_pred_tp1, mu_filt_t, Sigma_filt_t, A = inputs

        # J_t = tf.matmul(tf.reshape(tf.transpose(tf.matrix_inverse(Sigma_pred_tp1), [0, 2, 1]), [-1, self.dim_z]),
        #                 self.A)
        # J_t = tf.transpose(tf.reshape(J_t, [-1, self.dim_z, self.dim_z]), [0, 2, 1])
        J_t = tf.matmul(tf.transpose(A, [0, 2, 1]), tf.matrix_inverse(Sigma_pred_tp1))
        J_t = tf.matmul(Sigma_filt_t, J_t)

        mu_back = mu_filt_t + tf.matmul(J_t, mu_back - mu_pred_tp1)
        Sigma_back = Sigma_filt_t + tf.matmul(J_t, tf.matmul(Sigma_back - Sigma_pred_tp1, J_t, adjoint_b=True))

        return mu_back, Sigma_back 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:22,代碼來源:filter.py

示例2: gaussian_log_posterior

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def gaussian_log_posterior(x, covariance):
    """Evaluate the unormalized log posterior from a zero-mean
    Gaussian distribution, with the specifed covariance matrix
    
    Parameters
    ----------
    x : tf.Variable
        Sample ~ target distribution
    covariance : tf.Variable N x N 
        Covariance matrix for N-dim Gaussian

        For diagonal - [[sigma_1^2, 0], [0, sigma_2^2]]

    Returns
    -------
    logp : float
        Unormalized log p(x)
    """
    covariance_inverse = tf.matrix_inverse(covariance)

    xA = tf.matmul(x, covariance_inverse)
    xAx = tf.matmul(xA, tf.transpose(x))
    return xAx / 2.0 
開發者ID:arahuja,項目名稱:hamiltonian-monte-carlo,代碼行數:25,代碼來源:gaussian_sampler_example.py

示例3: LandmarkTransformLayer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def LandmarkTransformLayer(Landmark, Param, Inverse=False):
    '''
    Landmark: [N, N_LANDMARK x 2]
    Param: [N, 6]
    return: [N, N_LANDMARK x 2]
    '''

    A = tf.reshape(Param[:, 0:4], [-1, 2, 2])
    T = tf.reshape(Param[:, 4:6], [-1, 1, 2])

    Landmark = tf.reshape(Landmark, [-1, N_LANDMARK, 2])
    if Inverse:
        A = tf.matrix_inverse(A)
        T = tf.matmul(-T, A)

    return tf.reshape(tf.matmul(Landmark, A) + T, [-1, N_LANDMARK * 2]) 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:18,代碼來源:layers.py

示例4: get_matrix_tree

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def get_matrix_tree(r, A):
    L = tf.reduce_sum(A, 1)
    L = tf.matrix_diag(L)
    L = L - A

    r_diag = tf.matrix_diag(r)
    LL = L + r_diag

    LL_inv = tf.matrix_inverse(LL)  #batch_l, doc_l, doc_l
    LL_inv_diag_ = tf.matrix_diag_part(LL_inv)

    d0 = tf.multiply(r, LL_inv_diag_)

    LL_inv_diag = tf.expand_dims(LL_inv_diag_, 2)

    tmp1 = tf.multiply(A, tf.matrix_transpose(LL_inv_diag))
    tmp2 = tf.multiply(A, tf.matrix_transpose(LL_inv))

    d = tmp1 - tmp2
    d = tf.concat([tf.expand_dims(d0,[1]), d], 1)
    return d 
開發者ID:misonuma,項目名稱:strsum,代碼行數:23,代碼來源:components.py

示例5: pixel2cam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True):
    """Transforms coordinates in the pixel frame to the camera frame.

    Args:
      depth: [batch, height, width]
      pixel_coords: homogeneous pixel coordinates [batch, 3, height, width]
      intrinsics: camera intrinsics [batch, 3, 3]
      is_homogeneous: return in homogeneous coordinates
    Returns:
      Coords in the camera frame [batch, 3 (4 if homogeneous), height, width]
    """
    batch, height, width = depth.get_shape().as_list()
    depth = tf.reshape(depth, [batch, 1, -1])
    pixel_coords = tf.reshape(pixel_coords, [batch, 3, -1])
    cam_coords = tf.matmul(tf.matrix_inverse(intrinsics), pixel_coords) * depth
    if is_homogeneous:
        ones = tf.ones([batch, 1, height*width])
        cam_coords = tf.concat([cam_coords, ones], axis=1)
    cam_coords = tf.reshape(cam_coords, [batch, -1, height, width])
    return cam_coords 
開發者ID:hlzz,項目名稱:DeepMatchVO,代碼行數:22,代碼來源:geo_utils.py

示例6: fuse3D

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def fuse3D(opt,XYZ,maskLogit,fuseTrans): # [B,H,W,3V],[B,H,W,V]
	with tf.name_scope("transform_fuse3D"):
		XYZ = tf.transpose(XYZ,perm=[0,3,1,2]) # [B,3V,H,W]
		maskLogit = tf.transpose(maskLogit,perm=[0,3,1,2]) # [B,V,H,W]
		# 2D to 3D coordinate transformation
		invKhom = np.linalg.inv(opt.Khom2Dto3D)
		invKhomTile = np.tile(invKhom,[opt.batchSize,opt.outViewN,1,1])
		# viewpoint rigid transformation
		q_view = fuseTrans
		t_view = np.tile([0,0,-opt.renderDepth],[opt.outViewN,1]).astype(np.float32)
		RtHom_view = transParamsToHomMatrix(q_view,t_view)
		RtHomTile_view = tf.tile(tf.expand_dims(RtHom_view,0),[opt.batchSize,1,1,1])
		invRtHomTile_view = tf.matrix_inverse(RtHomTile_view)
		# effective transformation
		RtHomTile = tf.matmul(invRtHomTile_view,invKhomTile) # [B,V,4,4]
		RtTile = RtHomTile[:,:,:3,:] # [B,V,3,4]
		# transform depth stack
		ML = tf.reshape(maskLogit,[opt.batchSize,1,-1]) # [B,1,VHW]
		XYZhom = get3DhomCoord(XYZ,opt) # [B,V,4,HW]
		XYZid = tf.matmul(RtTile,XYZhom) # [B,V,3,HW]
		# fuse point clouds
		XYZid = tf.reshape(tf.transpose(XYZid,perm=[0,2,1,3]),[opt.batchSize,3,-1]) # [B,3,VHW]
	return XYZid,ML # [B,1,VHW]

# build transformer (render 2D depth) 
開發者ID:chenhsuanlin,項目名稱:3D-point-cloud-generation,代碼行數:27,代碼來源:transform.py

示例7: objective

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def objective(self, parameters, data=None, labels=None):
    theta_a = parameters[0]
    theta_b = parameters[1]

    # Compute theta_c from theta_a and theta_b.
    p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b)
    p_trans = tf.transpose(p, name="p_trans")
    p_inv = tf.matmul(
        tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv")
    theta_c = tf.matmul(p_inv, self.c, name="theta_c")

    # Compute the "predicted" value of c.
    c_hat = tf.matmul(p, theta_c, name="c_hat")

    # Compute the loss (sum of squared errors).
    loss = tf.reduce_sum((c_hat - self.c)**2, name="loss")

    return loss 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:20,代碼來源:problem_generator.py

示例8: solve_ridge

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def solve_ridge(x, y, ridge_factor):
  with tf.name_scope("solve_ridge"):
    # Added a column of ones to the end of the feature matrix for bias
    A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1)

    # Analytic solution for the ridge regression loss
    inv_target = tf.matmul(A, A, transpose_a=True)
    np_diag_penalty = ridge_factor * np.ones(
        A.shape.as_list()[1], dtype="float32")
    # Remove penalty on bias component of weights
    np_diag_penalty[-1] = 0.
    diag_penalty = tf.constant(np_diag_penalty)
    inv_target += tf.diag(diag_penalty)

    inv = tf.matrix_inverse(inv_target)
    w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True))
    return w 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:19,代碼來源:linear_regression.py

示例9: _verifyInverse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def _verifyInverse(self, x):
    for np_type in [np.float32, np.float64]:
      for adjoint in False, True:
        y = x.astype(np_type)
        with self.test_session():
          # Verify that x^{-1} * x == Identity matrix.
          inv = tf.matrix_inverse(y, adjoint=adjoint)
          tf_ans = tf.batch_matmul(inv, y, adj_y=adjoint)
          np_ans = np.identity(y.shape[-1])
          if x.ndim > 2:
            tiling = list(y.shape)
            tiling[-2:] = [1, 1]
            np_ans = np.tile(np_ans, tiling)
          out = tf_ans.eval()
          self.assertAllClose(np_ans, out)
          self.assertShapeEqual(y, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:matrix_inverse_op_test.py

示例10: inv_homography

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def inv_homography(k_s, k_t, rot, t, n_hat, a):
  """Computes inverse homography matrix between two cameras via a plane.

  Args:
      k_s: intrinsics for source cameras, [..., 3, 3] matrices
      k_t: intrinsics for target cameras, [..., 3, 3] matrices
      rot: relative rotations between source and target, [..., 3, 3] matrices
      t: [..., 3, 1], translations from source to target camera. Mapping a 3D
        point p from source to target is accomplished via rot * p + t.
      n_hat: [..., 1, 3], plane normal w.r.t source camera frame
      a: [..., 1, 1], plane equation displacement
  Returns:
      homography: [..., 3, 3] inverse homography matrices (homographies mapping
        pixel coordinates from target to source).
  """
  with tf.name_scope('inv_homography'):
    rot_t = tf.matrix_transpose(rot)
    k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv')

    denom = a - tf.matmul(tf.matmul(n_hat, rot_t), t)
    numerator = tf.matmul(tf.matmul(tf.matmul(rot_t, t), n_hat), rot_t)
    inv_hom = tf.matmul(
        tf.matmul(k_s, rot_t + divide_safe(numerator, denom)),
        k_t_inv, name='inv_hom')
    return inv_hom 
開發者ID:google,項目名稱:stereo-magnification,代碼行數:27,代碼來源:homography.py

示例11: invertible1x1Conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def invertible1x1Conv(z, n_channels, forward=True, name='inv1x1conv'):
    with tf.variable_scope(name):
        shape = tf.shape(z)
        batch_size, length, channels = shape[0], shape[1], shape[2]

        # sample a random orthogonal matrix to initialize weight
        W_init = np.linalg.qr(np.random.randn(n_channels, n_channels))[0].astype('float32')
        W = create_variable_init('W', initializer=W_init)

        # compute log determinant
        det = tf.log(tf.abs(tf.cast(tf.matrix_determinant(tf.cast(W, tf.float64)), tf.float32)))
        logdet = det * tf.cast(batch_size * length, 'float32')
        if forward:
            _W = tf.reshape(W, [1, n_channels, n_channels])
            z = tf.nn.conv1d(z, _W, stride=1, padding='SAME')
            return z, logdet
        else:
            _W = tf.matrix_inverse(W)
            _W = tf.reshape(_W, [1, n_channels, n_channels])
            z = tf.nn.conv1d(z, _W, stride=1, padding='SAME')
            return z 
開發者ID:weixsong,項目名稱:WaveGlow,代碼行數:23,代碼來源:glow.py

示例12: layer_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def layer_op(self, input_tensor):
        sz = input_tensor.get_shape().as_list()
        grid_warper = AffineGridWarperLayer(sz[1:-1],
                                            sz[1:-1])

        resampler = ResamplerLayer(interpolation=self.interpolation,
                                   boundary=self.boundary)
        relative_transform = self.transform_func(sz[0])
        to_relative=tf.tile([[[2./(sz[1]-1), 0., 0., -1.],
                              [0., 2. / (sz[2] - 1), 0., -1.],
                              [0., 0., 2. / (sz[3] - 1), -1.],
                              [0., 0., 0., 1.]]],[sz[0],1,1])
        from_relative=tf.matrix_inverse(to_relative)
        voxel_transform = tf.matmul(from_relative,
                                    tf.matmul(relative_transform,to_relative))
        warp_parameters = tf.reshape(voxel_transform[:, 0:3, 0:4],
                                     [sz[0], 12])
        grid = grid_warper(warp_parameters)
        return resampler(input_tensor,grid) 
開發者ID:soltanianzadeh,項目名稱:STNeuroNet,代碼行數:21,代碼來源:stneuronet.py

示例13: pixel2cam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def pixel2cam(depth, pixel_coords, intrinsics, is_homogeneous=True):
  """Transforms coordinates in the pixel frame to the camera frame.

  Args:
    depth: [batch, height, width]
    pixel_coords: homogeneous pixel coordinates [batch, 3, height, width]
    intrinsics: camera intrinsics [batch, 3, 3]
    is_homogeneous: return in homogeneous coordinates
  Returns:
    Coords in the camera frame [batch, 3 (4 if homogeneous), height, width]
  """
  batch, height, width = depth.get_shape().as_list()
  depth = tf.reshape(depth, [batch, 1, -1])
  pixel_coords = tf.reshape(pixel_coords, [batch, 3, -1])
  cam_coords = tf.matmul(tf.matrix_inverse(intrinsics), pixel_coords) * depth
  if is_homogeneous:
    ones = tf.ones([batch, 1, height*width])
    cam_coords = tf.concat([cam_coords, ones], axis=1)
  cam_coords = tf.reshape(cam_coords, [batch, -1, height, width])
  return cam_coords 
開發者ID:yzcjtr,項目名稱:GeoNet,代碼行數:22,代碼來源:utils.py

示例14: get_multi_scale_intrinsics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def get_multi_scale_intrinsics(self, raw_cam_mat, num_scales):
        proj_cam2pix = []
        # Scale the intrinsics accordingly for each scale
        for s in range(num_scales):
            fx = raw_cam_mat[0,0]/(2 ** s)
            fy = raw_cam_mat[1,1]/(2 ** s)
            cx = raw_cam_mat[0,2]/(2 ** s)
            cy = raw_cam_mat[1,2]/(2 ** s)
            r1 = tf.stack([fx, 0, cx])
            r2 = tf.stack([0, fy, cy])
            r3 = tf.constant([0.,0.,1.])
            proj_cam2pix.append(tf.stack([r1, r2, r3]))
        proj_cam2pix = tf.stack(proj_cam2pix)
        proj_pix2cam = tf.matrix_inverse(proj_cam2pix)
        proj_cam2pix.set_shape([num_scales,3,3])
        proj_pix2cam.set_shape([num_scales,3,3])
        return proj_cam2pix, proj_pix2cam 
開發者ID:zhenheny,項目名稱:LEGO,代碼行數:19,代碼來源:LEGOLearner.py

示例15: forward_projection_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_inverse [as 別名]
def forward_projection_matrix(k_s, k_t, rot, t):
  """Projection matrix for transforming a src pixel coordinates to target frame.

  Args:
      k_s: intrinsics for source cameras, are [...] X 3 X 3 matrices
      k_t: intrinsics for target cameras, are [...] X 3 X 3 matrices
      rot: relative rotation from source to target, are [...] X 3 X 3 matrices
      t: [...] X 3 X 1 translations from source to target camera
  Returns:
      transform: [...] X 4 X 4 projection matrix
  """
  with tf.name_scope('forward_projection_matrix'):
    k_s_inv = tf.matrix_inverse(k_s, name='k_s_inv')
    return tf.matmul(
        pad_intrinsic(k_t),
        tf.matmul(pad_extrinsic(rot, t), pad_intrinsic(k_s_inv))) 
開發者ID:google,項目名稱:layered-scene-inference,代碼行數:18,代碼來源:projection.py


注:本文中的tensorflow.matrix_inverse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。