當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.matrix_diag方法代碼示例

本文整理匯總了Python中tensorflow.matrix_diag方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matrix_diag方法的具體用法?Python tensorflow.matrix_diag怎麽用?Python tensorflow.matrix_diag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_diag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_matrix_tree

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def get_matrix_tree(r, A):
    L = tf.reduce_sum(A, 1)
    L = tf.matrix_diag(L)
    L = L - A

    r_diag = tf.matrix_diag(r)
    LL = L + r_diag

    LL_inv = tf.matrix_inverse(LL)  #batch_l, doc_l, doc_l
    LL_inv_diag_ = tf.matrix_diag_part(LL_inv)

    d0 = tf.multiply(r, LL_inv_diag_)

    LL_inv_diag = tf.expand_dims(LL_inv_diag_, 2)

    tmp1 = tf.multiply(A, tf.matrix_transpose(LL_inv_diag))
    tmp2 = tf.multiply(A, tf.matrix_transpose(LL_inv))

    d = tmp1 - tmp2
    d = tf.concat([tf.expand_dims(d0,[1]), d], 1)
    return d 
開發者ID:misonuma,項目名稱:strsum,代碼行數:23,代碼來源:components.py

示例2: build_backward_variance

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def build_backward_variance(self, Yvar):
        """
        Additional method for scaling variance backward (used in :class:`.Normalizer`). Can process both the diagonal
        variances returned by predict_f, as well as full covariance matrices.

        :param Yvar: size N x N x P or size N x P
        :return: Yvar scaled, same rank and size as input
        """
        rank = tf.rank(Yvar)
        # Because TensorFlow evaluates both fn1 and fn2, the transpose can't be in the same line. If a full cov
        # matrix is provided fn1 turns it into a rank 4, then tries to transpose it as a rank 3.
        # Splitting it in two steps however works fine.
        Yvar = tf.cond(tf.equal(rank, 2), lambda: tf.matrix_diag(tf.transpose(Yvar)), lambda: Yvar)
        Yvar = tf.cond(tf.equal(rank, 2), lambda: tf.transpose(Yvar, perm=[1, 2, 0]), lambda: Yvar)

        N = tf.shape(Yvar)[0]
        D = tf.shape(Yvar)[2]
        L = tf.cholesky(tf.square(tf.transpose(self.A)))
        Yvar = tf.reshape(Yvar, [N * N, D])
        scaled_var = tf.reshape(tf.transpose(tf.cholesky_solve(L, tf.transpose(Yvar))), [N, N, D])
        return tf.cond(tf.equal(rank, 2), lambda: tf.reduce_sum(scaled_var, axis=1), lambda: scaled_var) 
開發者ID:GPflow,項目名稱:GPflowOpt,代碼行數:23,代碼來源:transforms.py

示例3: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def __call__(self, query, key, value, mask=None):
        batch_size = tf.shape(query)[0]
        max_query_len = tf.shape(query)[1]
        max_key_len = tf.shape(key)[1]
        wq = tf.transpose(
            tf.reshape(self.dense_layers[0](query), [batch_size, max_query_len, self.heads, self.units // self.heads]),
            [2, 0, 1, 3])  # Head*B*QL*(U/Head)
        wk = tf.transpose(
            tf.reshape(self.dense_layers[1](key), [batch_size, max_key_len, self.heads, self.units // self.heads]),
            [2, 0, 1, 3])  # Head*B*KL*(U/Head)
        wv = tf.transpose(
            tf.reshape(self.dense_layers[2](value), [batch_size, max_key_len, self.heads, self.units // self.heads]),
            [2, 0, 1, 3])  # Head*B*KL*(U/Head)
        attention_score = tf.matmul(wq, wk, transpose_b=True) / tf.sqrt(float(self.units) / self.heads)  # Head*B*QL*KL
        if query == key and not self.attention_on_itself:
            attention_score += tf.matrix_diag(tf.zeros(max_key_len) - 100.0)
        if mask is not None:
            attention_score += tf.expand_dims(mask, 1)
        similarity = tf.nn.softmax(attention_score, -1)  # Head*B*QL*KL
        return tf.reshape(tf.transpose(tf.matmul(similarity, wv), [1, 2, 0, 3]),
                          [batch_size, max_query_len, self.units])  # B*QL*U 
開發者ID:sogou,項目名稱:SogouMRCToolkit,代碼行數:23,代碼來源:layers.py

示例4: _updated_mat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def _updated_mat(self, mat, v, diag):
    # Get dense matrix defined by its square root, which is an update of `mat`:
    # A = (mat + v D v^T) (mat + v D v^T)^T
    # D is the diagonal matrix with `diag` on the diagonal.

    # If diag is None, then it defaults to the identity matrix, so DV^T = V^T
    if diag is None:
      diag_vt = tf.matrix_transpose(v)
    else:
      diag_mat = tf.matrix_diag(diag)
      diag_vt = tf.batch_matmul(diag_mat, v, adj_y=True)

    v_diag_vt = tf.batch_matmul(v, diag_vt)
    sqrt = mat + v_diag_vt
    a = tf.batch_matmul(sqrt, sqrt, adj_y=True)
    return a.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:operator_pd_vdvt_update_test.py

示例5: upsample2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def upsample2d(inputs, strides, padding='SAME', upsample_mode='bilinear'):
    if upsample_mode == 'bilinear':
        single_bilinear_kernel = get_bilinear_kernel(strides).astype(np.float32)
        input_shape = inputs.get_shape().as_list()
        bilinear_kernel = tf.matrix_diag(tf.tile(tf.constant(single_bilinear_kernel)[..., None], (1, 1, input_shape[-1])))
        outputs = deconv2d(inputs, input_shape[-1], kernel_size=single_bilinear_kernel.shape,
                           strides=strides, kernel=bilinear_kernel, padding=padding, use_bias=False)
    elif upsample_mode == 'nearest':
        strides = list(strides) if isinstance(strides, (tuple, list)) else [strides] * 2
        input_shape = inputs.get_shape().as_list()
        inputs_tiled = tf.tile(inputs[:, :, None, :, None, :], [1, 1, strides[0], 1, strides[1], 1])
        outputs = tf.reshape(inputs_tiled, [input_shape[0], input_shape[1] * strides[0],
                                            input_shape[2] * strides[1], input_shape[3]])
    else:
        raise ValueError("Unknown upsample mode %s" % upsample_mode)
    return outputs 
開發者ID:alexlee-gk,項目名稱:video_prediction,代碼行數:18,代碼來源:ops.py

示例6: regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def regularizer(self, kl_loss, z_mean, z_logvar, z_sampled):
    cov_z_mean = compute_covariance_z_mean(z_mean)
    lambda_d = self.lambda_d_factor * self.lambda_od
    if self.dip_type == "i":  # Eq 6 page 4
      # mu = z_mean is [batch_size, num_latent]
      # Compute cov_p(x) [mu(x)] = E[mu*mu^T] - E[mu]E[mu]^T]
      cov_dip_regularizer = regularize_diag_off_diag_dip(
          cov_z_mean, self.lambda_od, lambda_d)
    elif self.dip_type == "ii":
      cov_enc = tf.matrix_diag(tf.exp(z_logvar))
      expectation_cov_enc = tf.reduce_mean(cov_enc, axis=0)
      cov_z = expectation_cov_enc + cov_z_mean
      cov_dip_regularizer = regularize_diag_off_diag_dip(
          cov_z, self.lambda_od, lambda_d)
    else:
      raise NotImplementedError("DIP variant not supported.")
    return kl_loss + cov_dip_regularizer 
開發者ID:google-research,項目名稱:disentanglement_lib,代碼行數:19,代碼來源:vae.py

示例7: get_laplacian

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def get_laplacian(self, adj_matrix, normalize=True):
        """Compute pairwise distance of a point cloud.

        Args:
            pairwise distance: tensor (batch_size, num_points, num_points)

        Returns:
            pairwise distance: (batch_size, num_points, num_points)
        """
        if normalize:
            D = tf.reduce_sum(adj_matrix, axis=1)  # (batch_size,num_points)
            eye = tf.ones_like(D)
            eye = tf.matrix_diag(eye)
            D = 1 / tf.sqrt(D)
            D = tf.matrix_diag(D)
            L = eye - tf.matmul(tf.matmul(D, adj_matrix), D)
        else:
            D = tf.reduce_sum(adj_matrix, axis=1)  # (batch_size,num_points)
            # eye = tf.ones_like(D)
            # eye = tf.matrix_diag(eye)
            # D = 1 / tf.sqrt(D)
            D = tf.matrix_diag(D)
            L = D - adj_matrix
        return L 
開發者ID:tegusi,項目名稱:RGCNN,代碼行數:26,代碼來源:seg_model.py

示例8: gradient_svd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def gradient_svd(op, ds, dU, dV):
	s, U, V = op.outputs

	u_sz = tf.squeeze(tf.slice(tf.shape(dU),[1],[1]))
	v_sz = tf.squeeze(tf.slice(tf.shape(dV),[1],[1]))
	s_sz = tf.squeeze(tf.slice(tf.shape(ds),[1],[1]))

	S = tf.matrix_diag(s)
	s_2 = tf.square(s)

	eye = tf.expand_dims(tf.eye(s_sz),0) 
	k = (1 - eye)/(tf.expand_dims(s_2,2)-tf.expand_dims(s_2,1) + eye)
	KT = tf.matrix_transpose(k)
	KT = removenan(KT)
	
	def msym(X):
		return (X+tf.matrix_transpose(X))
	
	def left_grad(U,S,V,dU,dV):
		U, V = (V, U); dU, dV = (dV, dU)
		D = tf.matmul(dU,tf.matrix_diag(1/(s+1e-8)))
		US = tf.matmul(U,S)
	
		grad = tf.matmul(D, V, transpose_b=True)\
			  +tf.matmul(tf.matmul(U,tf.matrix_diag(tf.matrix_diag_part(-tf.matmul(U,D,transpose_a=True)))), V, transpose_b=True)\
			  +tf.matmul(2*tf.matmul(US, msym(KT*(tf.matmul(V,-tf.matmul(V,tf.matmul(D,US,transpose_a=True)),transpose_a=True)))),V,transpose_b=True)
		grad = tf.matrix_transpose(grad)
		return grad

	def right_grad(U,S,V,dU,dV):
		US = tf.matmul(U,S)
		grad = tf.matmul(2*tf.matmul(US, msym(KT*(tf.matmul(V,dV,transpose_a=True))) ),V,transpose_b=True)
		return grad
	
	grad = tf.cond(tf.greater(v_sz, u_sz), lambda : left_grad(U,S,V,dU,dV), 
										   lambda : right_grad(U,S,V,dU,dV))
	
	return [grad] 
開發者ID:yyht,項目名稱:BERT,代碼行數:40,代碼來源:svp.py

示例9: testVector

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testVector(self):
    with self.test_session(use_gpu=self._use_gpu):
      v = np.array([1.0, 2.0, 3.0])
      mat = np.diag(v)
      v_diag = tf.matrix_diag(v)
      self.assertEqual((3, 3), v_diag.get_shape())
      self.assertAllEqual(v_diag.eval(), mat) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:diag_op_test.py

示例10: testBatchVector

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testBatchVector(self):
    with self.test_session(use_gpu=self._use_gpu):
      v_batch = np.array([[1.0, 2.0, 3.0],
                          [4.0, 5.0, 6.0]])
      mat_batch = np.array(
          [[[1.0, 0.0, 0.0],
            [0.0, 2.0, 0.0],
            [0.0, 0.0, 3.0]],
           [[4.0, 0.0, 0.0],
            [0.0, 5.0, 0.0],
            [0.0, 0.0, 6.0]]])
      v_batch_diag = tf.matrix_diag(v_batch)
      self.assertEqual((2, 3, 3), v_batch_diag.get_shape())
      self.assertAllEqual(v_batch_diag.eval(), mat_batch) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:16,代碼來源:diag_op_test.py

示例11: testInvalidShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testInvalidShape(self):
    with self.assertRaisesRegexp(ValueError, "must be at least rank 1"):
      tf.matrix_diag(0) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:5,代碼來源:diag_op_test.py

示例12: testInvalidShapeAtEval

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testInvalidShapeAtEval(self):
    with self.test_session(use_gpu=self._use_gpu):
      v = tf.placeholder(dtype=tf.float32)
      with self.assertRaisesOpError("input must be at least 1-dim"):
        tf.matrix_diag(v).eval(feed_dict={v: 0.0}) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:diag_op_test.py

示例13: testGrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testGrad(self):
    shapes = ((3,), (7, 4))
    with self.test_session(use_gpu=self._use_gpu):
      for shape in shapes:
        x = tf.constant(np.random.rand(*shape), np.float32)
        y = tf.matrix_diag(x)
        error = tf.test.compute_gradient_error(x, x.get_shape().as_list(),
                                               y, y.get_shape().as_list())
        self.assertLess(error, 1e-4) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:diag_op_test.py

示例14: _diag_to_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def _diag_to_matrix(self, diag):
    return tf.matrix_diag(diag).eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:operator_pd_diag_test.py

示例15: testSample

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matrix_diag [as 別名]
def testSample(self):
    mu = [-1.0, 1.0]
    diag = [1.0, 2.0]
    with self.test_session():
      dist = distributions.MultivariateNormalDiag(mu, diag)
      samps = dist.sample(1000, seed=0).eval()
      cov_mat = tf.matrix_diag(diag).eval()**2

      self.assertAllClose(mu, samps.mean(axis=0), atol=0.1)
      self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.1) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:mvn_test.py


注:本文中的tensorflow.matrix_diag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。