本文整理匯總了Python中tensorflow.matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.matmul方法的具體用法?Python tensorflow.matmul怎麽用?Python tensorflow.matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_fgm_gradient_max
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def test_fgm_gradient_max(self):
input_dim = 2
num_classes = 3
batch_size = 4
rng = np.random.RandomState([2017, 8, 23])
x = tf.placeholder(tf.float32, [batch_size, input_dim])
weights = tf.placeholder(tf.float32, [input_dim, num_classes])
logits = tf.matmul(x, weights)
probs = tf.nn.softmax(logits)
adv_x = fgm(x, probs)
random_example = rng.randint(batch_size)
random_feature = rng.randint(input_dim)
output = tf.slice(adv_x, [random_example, random_feature], [1, 1])
dx, = tf.gradients(output, x)
# The following line catches GitHub issue #243
self.assertIsNotNone(dx)
dx = self.sess.run(dx, feed_dict=random_feed_dict(rng, [x, weights]))
ground_truth = np.zeros((batch_size, input_dim))
ground_truth[random_example, random_feature] = 1.
self.assertClose(dx, ground_truth)
示例2: fprop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def fprop(self, x):
output = OrderedDict()
# first convolutional layer
h_conv1 = tf.nn.relu(self._conv2d(x, self.W_conv1) + self.b_conv1)
h_pool1 = self._max_pool_2x2(h_conv1)
# second convolutional layer
h_conv2 = tf.nn.relu(
self._conv2d(h_pool1, self.W_conv2) + self.b_conv2)
h_pool2 = self._max_pool_2x2(h_conv2)
# first fully connected layer
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, self.W_fc1) + self.b_fc1)
# output layer
logits = tf.matmul(h_fc1, self.W_fc2) + self.b_fc2
output = deterministic_dict(locals())
del output["self"]
output[self.O_PROBS] = tf.nn.softmax(logits=logits)
return output
示例3: nn_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
# 同一層神經網絡放在一個統一的命名空間下
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
# 權重及監控變量
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name+'/weights')
with tf.name_scope('biases'):
# 偏置及監控變量
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
# 記錄神經網絡輸出節點在經過激活函數之前的分布
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation')
# 記錄神經網絡輸出節點在經過激活函數之後的分布
tf.summary.histogram(layer_name + '/activations', activations)
return activations
示例4: createLinearModel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def createLinearModel(dimension):
np.random.seed(1024)
# 定義 x 和 y
x = tf.placeholder(tf.float64, shape=[None, dimension], name='x')
# 寫成矩陣形式會大大加快運算速度
y = tf.placeholder(tf.float64, shape=[None, 1], name='y')
# 定義參數估計值和預測值
betaPred = tf.Variable(np.random.random([dimension, 1]))
yPred = tf.matmul(x, betaPred, name='y_pred')
# 定義損失函數
loss = tf.reduce_mean(tf.square(yPred - y))
model = {
'loss_function': loss,
'independent_variable': x,
'dependent_variable': y,
'prediction': yPred,
'model_params': betaPred
}
return model
示例5: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def __call__(self, inputs, state, scope=None):
"""GRU cell with layer normalization."""
input_dim = inputs.get_shape().as_list()[1]
num_units = self._num_units
with tf.variable_scope(scope or "gru_cell"):
with tf.variable_scope("gates"):
w_h = tf.get_variable(
"w_h", [num_units, 2 * num_units],
initializer=self._w_h_initializer())
w_x = tf.get_variable(
"w_x", [input_dim, 2 * num_units],
initializer=self._w_x_initializer(input_dim))
z_and_r = (_layer_norm(tf.matmul(state, w_h), scope="layer_norm/w_h") +
_layer_norm(tf.matmul(inputs, w_x), scope="layer_norm/w_x"))
z, r = tf.split(tf.sigmoid(z_and_r), 2, 1)
with tf.variable_scope("candidate"):
w = tf.get_variable(
"w", [input_dim, num_units], initializer=self._w_initializer)
u = tf.get_variable(
"u", [num_units, num_units], initializer=self._u_initializer)
h_hat = (r * _layer_norm(tf.matmul(state, u), scope="layer_norm/u") +
_layer_norm(tf.matmul(inputs, w), scope="layer_norm/w"))
new_h = (1 - z) * state + z * self._activation(h_hat)
return new_h, new_h
示例6: get_hint_pool_idxs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# look up in large memory, no gradients
with tf.device(self.nn_device):
similarities = tf.matmul(tf.stop_gradient(normalized_query),
self.mem_keys, transpose_b=True, name='nn_mmul')
_, hint_pool_idxs = tf.nn.top_k(
tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
return hint_pool_idxs
示例7: combine_setup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def combine_setup(name, combine_type, embed_img, embed_goal, num_img_neuorons=None,
num_goal_neurons=None):
with tf.name_scope(name + '_' + combine_type):
if combine_type == 'add':
# Simple concat features from goal and image
out = embed_img + embed_goal
elif combine_type == 'multiply':
# Multiply things together
re_embed_img = tf.reshape(
embed_img, shape=[-1, num_img_neuorons / num_goal_neurons,
num_goal_neurons])
re_embed_goal = tf.reshape(embed_goal, shape=[-1, num_goal_neurons, 1])
x = tf.matmul(re_embed_img, re_embed_goal, transpose_a=False, transpose_b=False)
out = slim.flatten(x)
elif combine_type == 'none' or combine_type == 'imgonly':
out = embed_img
elif combine_type == 'goalonly':
out = embed_goal
else:
logging.fatal('Undefined combine_type: %s', combine_type)
return out
示例8: pass_through_embedding_matrix
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def pass_through_embedding_matrix(act_block, embedding_matrix, step_idx):
"""Passes the activations through the embedding_matrix.
Takes care to handle out of bounds lookups.
Args:
act_block: matrix of activations.
embedding_matrix: matrix of weights.
step_idx: vector containing step indices, with -1 indicating out of bounds.
Returns:
the embedded activations.
"""
# Indicator vector for out of bounds lookups.
step_idx_mask = tf.expand_dims(tf.equal(step_idx, -1), -1)
# Pad the last column of the activation vectors with the indicator.
act_block = tf.concat([act_block, tf.to_float(step_idx_mask)], 1)
return tf.matmul(act_block, embedding_matrix)
示例9: get_cell
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def get_cell(self):
self.cell_input_dim = self.internal_dim
def mlp(cell_input, prev_internal_state):
w1 = tf.get_variable('w1', [self.cell_input_dim, self.internal_dim])
b1 = tf.get_variable('b1', [self.internal_dim])
w2 = tf.get_variable('w2', [self.internal_dim, self.internal_dim])
b2 = tf.get_variable('b2', [self.internal_dim])
w3 = tf.get_variable('w3', [self.internal_dim, self.internal_dim])
b3 = tf.get_variable('b3', [self.internal_dim])
proj = tf.get_variable(
'proj', [self.internal_dim, self.output_dim])
hidden = cell_input
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w1), b1))
hidden = tf.tanh(tf.nn.bias_add(tf.matmul(hidden, w2), b2))
output = tf.matmul(hidden, proj)
return output, hidden
return mlp
示例10: gaussian_kernel_matrix
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def gaussian_kernel_matrix(x, y, sigmas):
r"""Computes a Guassian Radial Basis Kernel between the samples of x and y.
We create a sum of multiple gaussian kernels each having a width sigma_i.
Args:
x: a tensor of shape [num_samples, num_features]
y: a tensor of shape [num_samples, num_features]
sigmas: a tensor of floats which denote the widths of each of the
gaussians in the kernel.
Returns:
A tensor of shape [num_samples{x}, num_samples{y}] with the RBF kernel.
"""
beta = 1. / (2. * (tf.expand_dims(sigmas, 1)))
dist = compute_pairwise_distances(x, y)
s = tf.matmul(beta, tf.reshape(dist, (1, -1)))
return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist))
示例11: fc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def fc(inputs, output_size, init_bias=0.0, activation_func=tf.nn.relu, stddev=0.01):
input_shape = inputs.get_shape().as_list()
if len(input_shape) == 4:
fc_weights = tf.Variable(
tf.random_normal([input_shape[1] * input_shape[2] * input_shape[3], output_size], dtype=tf.float32,
stddev=stddev),
name='weights')
inputs = tf.reshape(inputs, [-1, fc_weights.get_shape().as_list()[0]])
else:
fc_weights = tf.Variable(tf.random_normal([input_shape[-1], output_size], dtype=tf.float32, stddev=stddev),
name='weights')
fc_biases = tf.Variable(tf.constant(init_bias, shape=[output_size], dtype=tf.float32), name='biases')
fc_layer = tf.matmul(inputs, fc_weights)
fc_layer = tf.nn.bias_add(fc_layer, fc_biases)
if activation_func:
fc_layer = activation_func(fc_layer)
return fc_layer
示例12: vq_nearest_neighbor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def vq_nearest_neighbor(x, hparams):
"""Find the nearest element in means to elements in x."""
bottleneck_size = 2**hparams.bottleneck_bits
means = hparams.means
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if hparams.bottleneck_kind == "em":
x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=bottleneck_size)
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
x_means_idx = tf.argmax(-dist, axis=-1)
x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
x_means = tf.matmul(x_means_hot, means)
e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
return x_means_hot, e_loss
示例13: rank_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
"""Experimental rank loss, thanks to kkurach@ for the code."""
with tf.name_scope("rank_loss"):
# Normalize first as this is assumed in cosine similarity later.
sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
image_emb = tf.nn.l2_normalize(image_emb, 1)
# Both sentence_emb and image_emb have size [batch, depth].
scores = tf.matmul(image_emb, tf.transpose(sentence_emb)) # [batch, batch]
diagonal = tf.diag_part(scores) # [batch]
cost_s = tf.maximum(0.0, margin - diagonal + scores) # [batch, batch]
cost_im = tf.maximum(
0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores) # [batch, batch]
# Clear diagonals.
batch_size = tf.shape(sentence_emb)[0]
empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
cost_s *= empty_diagonal_mat
cost_im *= empty_diagonal_mat
return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im)
示例14: compute_mfcc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def compute_mfcc(audio, **kwargs):
"""
Compute the MFCC for a given audio waveform. This is
identical to how DeepSpeech does it, but does it all in
TensorFlow so that we can differentiate through it.
"""
batch_size, size = audio.get_shape().as_list()
audio = tf.cast(audio, tf.float32)
# 1. Pre-emphasizer, a high-pass filter
audio = tf.concat((audio[:, :1], audio[:, 1:] - 0.97*audio[:, :-1], np.zeros((batch_size,1000),dtype=np.float32)), 1)
# 2. windowing into frames of 320 samples, overlapping
windowed = tf.stack([audio[:, i:i+400] for i in range(0,size-320,160)],1)
# 3. Take the FFT to convert to frequency space
ffted = tf.spectral.rfft(windowed, [512])
ffted = 1.0 / 512 * tf.square(tf.abs(ffted))
# 4. Compute the Mel windowing of the FFT
energy = tf.reduce_sum(ffted,axis=2)+1e-30
filters = np.load("filterbanks.npy").T
feat = tf.matmul(ffted, np.array([filters]*batch_size,dtype=np.float32))+1e-30
# 5. Take the DCT again, because why not
feat = tf.log(feat)
feat = tf.spectral.dct(feat, type=2, norm='ortho')[:,:,:26]
# 6. Amplify high frequencies for some reason
_,nframes,ncoeff = feat.get_shape().as_list()
n = np.arange(ncoeff)
lift = 1 + (22/2.)*np.sin(np.pi*n/22)
feat = lift*feat
width = feat.get_shape().as_list()[1]
# 7. And now stick the energy next to the features
feat = tf.concat((tf.reshape(tf.log(energy),(-1,width,1)), feat[:, :, 1:]), axis=2)
return feat
示例15: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import matmul [as 別名]
def call(self, inputs, mask=None, **kwargs):
if self.supports_masking:
if mask is None:
raise ValueError(
"When supports_masking=True,input must support masking")
queries, keys = inputs
key_masks = tf.expand_dims(mask[-1], axis=1)
else:
queries, keys, keys_length = inputs
hist_len = keys.get_shape()[1]
key_masks = tf.sequence_mask(keys_length, hist_len)
attention_score = LocalActivationUnit(
self.hidden_size, self.activation, 0, 1, False, 1024,)([queries, keys])
outputs = tf.transpose(attention_score, (0, 2, 1))
if self.weight_normalization:
paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
else:
paddings = tf.zeros_like(outputs)
outputs = tf.where(key_masks, outputs, paddings)
if self.weight_normalization:
outputs = tf.nn.softmax(outputs)
outputs = tf.matmul(outputs, keys)
return outputs