當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.map_fn方法代碼示例

本文整理匯總了Python中tensorflow.map_fn方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.map_fn方法的具體用法?Python tensorflow.map_fn怎麽用?Python tensorflow.map_fn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.map_fn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_noise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def add_noise(ids, sequence_length):
  """Wraps add_noise_python for a batch of tensors."""

  def _add_noise_single(ids, sequence_length):
    noisy_ids = add_noise_python(ids[:sequence_length])
    noisy_sequence_length = len(noisy_ids)
    ids[:noisy_sequence_length] = noisy_ids
    ids[noisy_sequence_length:] = 0
    return ids, np.int32(noisy_sequence_length)

  noisy_ids, noisy_sequence_length = tf.map_fn(
      lambda x: tf.py_func(_add_noise_single, x, [ids.dtype, tf.int32]),
      [ids, sequence_length],
      dtype=[ids.dtype, tf.int32],
      back_prop=False)

  noisy_ids.set_shape(ids.get_shape())
  noisy_sequence_length.set_shape(sequence_length.get_shape())

  return noisy_ids, noisy_sequence_length


# Step 3 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:25,代碼來源:train.py

示例2: preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def preprocess(self, inputs):
    """Feature-extractor specific preprocessing.

    See base class.

    Args:
      inputs: a [batch, height_in, width_in, channels] float tensor representing
        a batch of images with values between 0 and 255.0.

    Returns:
      preprocessed_inputs: a [batch, height_out, width_out, channels] float
        tensor representing a batch of images.
    Raises:
      ValueError: if inputs tensor does not have type tf.float32
    """
    if inputs.dtype is not tf.float32:
      raise ValueError('`preprocess` expects a tf.float32 tensor')
    with tf.name_scope('Preprocessor'):
      # TODO: revisit whether to always use batch size as  the number of
      # parallel iterations vs allow for dynamic batching.
      resized_inputs = tf.map_fn(self._image_resizer_fn,
                                 elems=inputs,
                                 dtype=tf.float32)
      return self._feature_extractor.preprocess(resized_inputs) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:ssd_meta_arch.py

示例3: get_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def get_logits(self, x):
    if x.name in self._logits_dict:
      return self._logits_dict[x.name]

    x = tf.map_fn(tf.image.per_image_standardization, x)

    logits = self._model_fn(
        {
            "inputs": x
        },
        None,
        "attack",
        params=self._params,
        config=self._config)
    self._logits_dict[x.name] = logits

    return tf.squeeze(logits) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:adv_attack_utils.py

示例4: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def main():
    args = parse_args()

    with tf.Session(graph=tf.Graph()) as session:
        input_var = tf.placeholder(
            tf.uint8, (None, 128, 64, 3), name="images")
        image_var = tf.map_fn(
            lambda x: _preprocess(x), tf.cast(input_var, tf.float32),
            back_prop=False)

        factory_fn = _network_factory()
        features, _ = factory_fn(image_var, reuse=None)
        features = tf.identity(features, name="features")

        saver = tf.train.Saver(slim.get_variables_to_restore())
        saver.restore(session, args.checkpoint_in)

        output_graph_def = tf.graph_util.convert_variables_to_constants(
            session, tf.get_default_graph().as_graph_def(),
            [features.name.split(":")[0]])
        with tf.gfile.GFile(args.graphdef_out, "wb") as file_handle:
            file_handle.write(output_graph_def.SerializeToString()) 
開發者ID:nwojke,項目名稱:deep_sort,代碼行數:24,代碼來源:freeze_model.py

示例5: from_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def from_config(cls, config, custom_objects=None):
    model = super(CalibratedLinear, cls).from_config(
        config, custom_objects=custom_objects)
    try:
      model_config = tf.keras.utils.deserialize_keras_object(
          config.get('model_config'), custom_objects=custom_objects)
      premade_lib.verify_config(model_config)
      model.model_config = model_config
    except ValueError:
      logging.warning(
          'Could not load model_config. Constructing model without it: %s',
          str(config.get('model_config')))
    return model


# TODO: add support for tf.map_fn and inputs of shape (B, ?, input_dim)
# as well as non-ragged inputs using padding/mask. 
開發者ID:tensorflow,項目名稱:lattice,代碼行數:19,代碼來源:premade.py

示例6: _encoded_image_string_tensor_input_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def _encoded_image_string_tensor_input_placeholder():
  """Returns input that accepts a batch of PNG or JPEG strings.

  Returns:
    a tuple of input placeholder and the output decoded images.
  """
  batch_image_str_placeholder = tf.placeholder(
      dtype=tf.string,
      shape=[None],
      name='encoded_image_string_tensor')
  def decode(encoded_image_string_tensor):
    image_tensor = tf.image.decode_image(encoded_image_string_tensor,
                                         channels=3)
    image_tensor.set_shape((None, None, 3))
    return image_tensor
  return (batch_image_str_placeholder,
          tf.map_fn(
              decode,
              elems=batch_image_str_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:exporter.py

示例7: _preprocess_frames

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def _preprocess_frames(self, example, indices):
    """Instantiates the ops used to preprocess the frames data."""
    frames = tf.concat(example['frames'], axis=0)
    frames = tf.gather(frames, indices, axis=1)
    frames = tf.map_fn(
        _convert_frame_data, tf.reshape(frames, [-1]),
        dtype=tf.float32, back_prop=False)
    dataset_image_dimensions = tuple(
        [self._dataset_info.frame_size] * 2 + [_NUM_CHANNELS])
    frames = tf.reshape(
        frames, (-1, self._example_size) + dataset_image_dimensions)
    if (self._custom_frame_size and
        self._custom_frame_size != self._dataset_info.frame_size):
      frames = tf.reshape(frames, (-1,) + dataset_image_dimensions)
      new_frame_dimensions = (self._custom_frame_size,) * 2 + (_NUM_CHANNELS,)
      frames = tf.image.resize_bilinear(
          frames, new_frame_dimensions[:2], align_corners=True)
      frames = tf.reshape(
          frames, (-1, self._example_size) + new_frame_dimensions)
    return frames 
開發者ID:deepmind,項目名稱:gqn-datasets,代碼行數:22,代碼來源:data_reader.py

示例8: _build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def _build(self, X):
        """Build the graph of this layer."""
        n_samples, input_shape = self._get_X_dims(X)
        Wdim = input_shape + [self.output_dim]

        W_init = initialise_weights(Wdim, self.init_fn)
        W = tf.Variable(W_init, name="W_map")
        summary_histogram(W)

        # Tiling W is much faster than mapping (tf.map_fn) the matmul
        Net = tf.matmul(X, _tile2samples(n_samples, W))

        # Regularizers
        penalty = self.l2 * tf.nn.l2_loss(W) + self.l1 * _l1_loss(W)

        # Optional Bias
        if self.use_bias is True:
            b_init = initialise_weights((1, self.output_dim), self.init_fn)
            b = tf.Variable(b_init, name="b_map")
            summary_histogram(b)

            Net += b
            penalty += self.l2 * tf.nn.l2_loss(b) + self.l1 * _l1_loss(b)

        return Net, penalty 
開發者ID:gradientinstitute,項目名稱:aboleth,代碼行數:27,代碼來源:layers.py

示例9: image_serving_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def image_serving_input_fn():
  """Serving input fn for raw images."""

  def _preprocess_image(image_bytes):
    """Preprocess a single raw image."""
    image = resnet_preprocessing.preprocess_image(
        image_bytes=image_bytes, is_training=False)
    return image

  image_bytes_list = tf.placeholder(
      shape=[None],
      dtype=tf.string,
  )
  images = tf.map_fn(
      _preprocess_image, image_bytes_list, back_prop=False, dtype=tf.float32)
  return tf.estimator.export.ServingInputReceiver(
      images, {'image_bytes': image_bytes_list}) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:19,代碼來源:imagenet_input.py

示例10: test_input_with_unknown_leading_dimension

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def test_input_with_unknown_leading_dimension(self):

    def get_random_shape_input():
      # Returns a Tensor of shape (?, 6)
      return tf.map_fn(lambda x: x * tf.random.normal([6]),
                       test_utils.get_tensor_with_random_shape())

    # Validate the premise of the test.
    assert get_random_shape_input().shape.as_list() == [None, 6]
    test_data = self.run_one_to_many_encode_decode(
        self.default_encoding_stage(), get_random_shape_input)
    self.common_asserts_for_test_data(test_data)
    encoded_shape = test_data.encoded_x[
        kashin.KashinHadamardEncodingStage.ENCODED_VALUES_KEY].shape
    self.assertEqual(test_data.x.shape[0], encoded_shape[0])
    self.assertEqual(8, encoded_shape[1]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:kashin_test.py

示例11: test_input_with_unknown_leading_dimension

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def test_input_with_unknown_leading_dimension(self):

    def get_random_shape_input():
      # Returns a Tensor of shape (?, 6)
      return tf.map_fn(lambda x: x * tf.random.normal([6]),
                       test_utils.get_tensor_with_random_shape())

    # Validate the premise of the test.
    assert get_random_shape_input().shape.as_list() == [None, 6]
    test_data = self.run_one_to_many_encode_decode(
        self.default_encoding_stage(), get_random_shape_input)
    self.common_asserts_for_test_data(test_data)
    encoded_shape = test_data.encoded_x[
        stages_impl.HadamardEncodingStage.ENCODED_VALUES_KEY].shape
    self.assertEqual(test_data.x.shape[0], encoded_shape[0])
    self.assertEqual(8, encoded_shape[1]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:stages_impl_test.py

示例12: build_detection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def build_detection(self):
    self.embeds = self.get_image_embedding(self.search_images, reuse=True)
    with tf.variable_scope('detection'):
      def _translation_match(x, z):
        x = tf.expand_dims(x, 0)  # [batch, in_height, in_width, in_channels]
        z = tf.expand_dims(z, -1)  # [filter_height, filter_width, in_channels, out_channels]
        return tf.nn.conv2d(x, z, strides=[1, 1, 1, 1], padding='VALID', name='translation_match')

      output = tf.map_fn(
        lambda x: _translation_match(x[0], x[1]),
        (self.embeds, self.templates), dtype=self.embeds.dtype)  # of shape [3, 1, 17, 17, 1]
      output = tf.squeeze(output, [1, 4])  # of shape e.g. [3, 17, 17]

      bias = tf.get_variable('biases', [1],
                             dtype=tf.float32,
                             initializer=tf.constant_initializer(0.0, dtype=tf.float32),
                             trainable=False)
      response = self.model_config['adjust_response_config']['scale'] * output + bias
      self.response = response 
開發者ID:bilylee,項目名稱:SiamFC-TensorFlow,代碼行數:21,代碼來源:inference_wrapper.py

示例13: build_detection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def build_detection(self, reuse=False):
    with tf.variable_scope('detection', reuse=reuse):
      def _translation_match(x, z):  # translation match for one example within a batch
        x = tf.expand_dims(x, 0)  # [1, in_height, in_width, in_channels]
        z = tf.expand_dims(z, -1)  # [filter_height, filter_width, in_channels, 1]
        return tf.nn.conv2d(x, z, strides=[1, 1, 1, 1], padding='VALID', name='translation_match')

      output = tf.map_fn(lambda x: _translation_match(x[0], x[1]),
                         (self.instance_embeds, self.templates),
                         dtype=self.instance_embeds.dtype)
      output = tf.squeeze(output, [1, 4])  # of shape e.g., [8, 15, 15]

      # Adjust score, this is required to make training possible.
      config = self.model_config['adjust_response_config']
      bias = tf.get_variable('biases', [1],
                             dtype=tf.float32,
                             initializer=tf.constant_initializer(0.0, dtype=tf.float32),
                             trainable=config['train_bias'])
      response = config['scale'] * output + bias
      self.response = response 
開發者ID:bilylee,項目名稱:SiamFC-TensorFlow,代碼行數:22,代碼來源:siamese_model.py

示例14: _vectorised_get_cum_graph_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def _vectorised_get_cum_graph_size(nodes, graph_sizes):
    """
    Takes a list of node ids and graph sizes ordered by segment ID and returns the
    number of nodes contained in graphs with smaller segment ID.

    :param nodes: List of node ids of shape (nodes)
    :param graph_sizes: List of graph sizes (i.e. tf.math.segment_sum(tf.ones_like(I), I) where I are the
    segment IDs).
    :return: A list of shape (nodes) where each entry corresponds to the number of nodes contained in graphs
    with smaller segment ID for each node.
    """
    def get_cum_graph_size(node):
        cum_graph_sizes = tf.cumsum(graph_sizes, exclusive=True)
        indicator_if_smaller = tf.cast(node - cum_graph_sizes >= 0, tf.int32)
        graph_id = tf.reduce_sum(indicator_if_smaller) - 1
        return tf.cumsum(graph_sizes, exclusive=True)[graph_id]

    return tf.map_fn(get_cum_graph_size, nodes) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:modes.py

示例15: _tf_example_input_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import map_fn [as 別名]
def _tf_example_input_placeholder():
  """Returns input that accepts a batch of strings with tf examples.

  Returns:
    a tuple of input placeholder and the output decoded images.
  """
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
    return image_tensor
  return (batch_tf_example_placeholder,
          tf.map_fn(decode,
                    elems=batch_tf_example_placeholder,
                    dtype=tf.uint8,
                    parallel_iterations=32,
                    back_prop=False)) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:21,代碼來源:exporter.py


注:本文中的tensorflow.map_fn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。