本文整理匯總了Python中tensorflow.make_tensor_proto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.make_tensor_proto方法的具體用法?Python tensorflow.make_tensor_proto怎麽用?Python tensorflow.make_tensor_proto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.make_tensor_proto方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_grpc_request_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def make_grpc_request_fn(servable_name, server, timeout_secs):
"""Wraps function to make grpc requests with runtime args."""
stub = _create_stub(server)
def _make_grpc_request(examples):
"""Builds and sends request to TensorFlow model server."""
request = predict_pb2.PredictRequest()
request.model_spec.name = servable_name
request.inputs["input"].CopyFrom(
tf.make_tensor_proto(
[ex.SerializeToString() for ex in examples], shape=[len(examples)]))
response = stub.Predict(request, timeout_secs)
outputs = tf.make_ndarray(response.outputs["outputs"])
scores = tf.make_ndarray(response.outputs["scores"])
assert len(outputs) == len(scores)
return [{ # pylint: disable=g-complex-comprehension
"outputs": output,
"scores": score
} for output, score in zip(outputs, scores)]
return _make_grpc_request
示例2: send_request
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def send_request(stub, model_name, batch_tokens, timeout=5.0):
"""Sends a translation request.
Args:
stub: The prediction service stub.
model_name: The model to request.
tokens: A list of tokens.
timeout: Timeout after this many seconds.
Returns:
A future.
"""
batch_tokens, lengths, max_length = pad_batch(batch_tokens)
batch_size = len(lengths)
request = predict_pb2.PredictRequest()
request.model_spec.name = model_name
request.inputs["tokens"].CopyFrom(tf.make_tensor_proto(
batch_tokens, dtype=tf.string, shape=(batch_size, max_length)))
request.inputs["length"].CopyFrom(tf.make_tensor_proto(
lengths, dtype=tf.int32, shape=(batch_size,)))
return stub.Predict.future(request, timeout)
示例3: test_compute_returns_result
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def test_compute_returns_result(self, mock_stub):
tensor_proto = tf.make_tensor_proto(1)
any_pb = any_pb2.Any()
any_pb.Pack(tensor_proto)
value = executor_pb2.Value(tensor=any_pb)
response = executor_pb2.ComputeResponse(value=value)
instance = mock_stub.return_value
instance.Compute = mock.Mock(side_effect=[response])
loop = asyncio.get_event_loop()
executor = create_remote_executor()
type_signature = computation_types.FunctionType(None, tf.int32)
comp = remote_executor.RemoteValue(executor_pb2.ValueRef(), type_signature,
executor)
result = loop.run_until_complete(comp.compute())
instance.Compute.assert_called_once()
self.assertEqual(result, 1)
示例4: test_op_info
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def test_op_info():
np_array = np.array([1, 2, 3], dtype=np.float32)
t_proto = tf.make_tensor_proto(np_array, dtype=np.float32)
ugraph = uTensorGraph(output_nodes=['dummy'])
op_info = OperationInfo(name='testing_op',
input_tensors=[],
n_inputs=0,
output_tensors=[],
n_outputs=0,
op_type='no_op',
lib_name='tensorflow',
op_attr={
'_utensor_to_skip': [1, 2, 3],
'_utensor_skip_this_too': None,
'tensor_no_skip': t_proto
},
ugraph=ugraph)
assert op_info.op_attr.get('_utensor_to_skip', None) == [1, 2, 3]
assert op_info.op_attr.get('_utensor_skip_this_too') is None
generic_tensor = op_info.op_attr.get('tensor_no_skip')
assert isinstance(generic_tensor,
TensorProtoConverter.__utensor_generic_type__)
assert (generic_tensor.np_array == np_array).all()
assert op_info.name in ugraph.ops_info
示例5: _post_process
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def _post_process(
self, elements: List[Union[tf.train.Example, tf.train.SequenceExample]],
outputs: Sequence[Mapping[Text, Any]]
) -> Iterable[prediction_log_pb2.PredictLog]:
result = []
for output in outputs:
predict_log = prediction_log_pb2.PredictLog()
for output_alias, values in output.items():
values = np.array(values)
tensor_proto = tf.make_tensor_proto(
values=values,
dtype=tf.as_dtype(values.dtype).as_datatype_enum,
shape=np.expand_dims(values, axis=0).shape)
predict_log.response.outputs[output_alias].CopyFrom(tensor_proto)
result.append(predict_log)
return result
# TODO(b/131873699): Add typehints once
# [BEAM-8381](https://issues.apache.org/jira/browse/BEAM-8381)
# is fixed.
# TODO(b/143484017): Add batch_size back off in the case there are functional
# reasons large batch sizes cannot be handled.
示例6: grpc_predict_raw
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def grpc_predict_raw(data):
port = 8500
channel = grpc.insecure_channel('{host}:{port}'.format(host=host, port=port))
# channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'textcnn_model'
request.model_spec.signature_name = "serving_default"
tensor_protos = {
# 一條一條的請求方式
'sentence':tf.make_tensor_proto(data['sentence'], dtype=tf.int64, shape=[1, 55])
}
for k in tensor_protos:
request.inputs[k].CopyFrom(tensor_protos[k])
response = stub.Predict(request, 5.0)
print(response)
示例7: _write_checkpoint_path_to_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def _write_checkpoint_path_to_summary(output_dir, checkpoint_path,
current_global_step):
"""Writes `checkpoint_path` into summary file in the given output directory.
Args:
output_dir: `str`, directory to write the summary file in.
checkpoint_path: `str`, checkpoint file path to be written to summary file.
current_global_step: `int`, the current global step.
"""
checkpoint_path_tag = 'checkpoint_path'
tf.compat.v1.logging.info('Saving \'%s\' summary for global step %d: %s',
checkpoint_path_tag, current_global_step,
checkpoint_path)
summary_proto = summary_pb2.Summary()
summary_proto.value.add(
tag=checkpoint_path_tag,
tensor=tf.make_tensor_proto(checkpoint_path, dtype=tf.dtypes.string))
summary_writer = tf.compat.v1.summary.FileWriterCache.get(output_dir)
summary_writer.add_summary(summary_proto, current_global_step)
summary_writer.flush()
示例8: text
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def text(self, tag, textdata, step=None):
"""Saves a text summary.
Args:
tag: str: label for this data
textdata: string, or 1D/2D list/numpy array of strings
step: int: training step
Note: markdown formatting is rendered by tensorboard.
"""
if step is None:
step = self._step
else:
self._step = step
smd = SummaryMetadata(
plugin_data=SummaryMetadata.PluginData(plugin_name='text'))
if isinstance(textdata, (str, bytes)):
tensor = tf.make_tensor_proto(
values=[textdata.encode(encoding='utf_8')], shape=(1,))
else:
textdata = onp.array(textdata) # convert lists, jax arrays, etc.
datashape = onp.shape(textdata)
if len(datashape) == 1:
tensor = tf.make_tensor_proto(
values=[td.encode(encoding='utf_8') for td in textdata],
shape=(datashape[0],))
elif len(datashape) == 2:
tensor = tf.make_tensor_proto(
values=[
td.encode(encoding='utf_8') for td in onp.reshape(textdata, -1)
],
shape=(datashape[0], datashape[1]))
summary = Summary(
value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)])
self.add_summary(summary, step)
# Copied from gin/tf/utils.py:GinConfigSaverHook
示例9: test_predict_request_json
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def test_predict_request_json(sagemaker_session):
data = [6.4, 3.2, 0.5, 1.5]
tensor_proto = tf.make_tensor_proto(
values=np.asarray(data), shape=[1, len(data)], dtype=tf.float32
)
predictor = RealTimePredictor(
sagemaker_session=sagemaker_session,
endpoint=ENDPOINT,
deserializer=tf_json_deserializer,
serializer=tf_json_serializer,
)
mock_response(
json.dumps(CLASSIFICATION_RESPONSE).encode("utf-8"), sagemaker_session, JSON_CONTENT_TYPE
)
result = predictor.predict(tensor_proto)
sagemaker_session.sagemaker_runtime_client.invoke_endpoint.assert_called_once_with(
Accept=JSON_CONTENT_TYPE,
Body=json_format.MessageToJson(tensor_proto),
ContentType=JSON_CONTENT_TYPE,
EndpointName="myendpoint",
)
assert result == CLASSIFICATION_RESPONSE
示例10: test_predict_tensor_request_csv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def test_predict_tensor_request_csv(sagemaker_session):
data = [6.4, 3.2, 0.5, 1.5]
tensor_proto = tf.make_tensor_proto(
values=np.asarray(data), shape=[1, len(data)], dtype=tf.float32
)
predictor = RealTimePredictor(
serializer=tf_csv_serializer,
deserializer=tf_json_deserializer,
sagemaker_session=sagemaker_session,
endpoint=ENDPOINT,
)
mock_response(
json.dumps(CLASSIFICATION_RESPONSE).encode("utf-8"), sagemaker_session, JSON_CONTENT_TYPE
)
result = predictor.predict(tensor_proto)
sagemaker_session.sagemaker_runtime_client.invoke_endpoint.assert_called_once_with(
Accept=JSON_CONTENT_TYPE,
Body="6.4,3.2,0.5,1.5",
ContentType=CSV_CONTENT_TYPE,
EndpointName="myendpoint",
)
assert result == CLASSIFICATION_RESPONSE
示例11: text
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def text(self, tag, textdata, step=None):
"""Saves a text summary.
Args:
tag: str: label for this data
textdata: string, or 1D/2D list/numpy array of strings
step: int: training step
Note: markdown formatting is rendered by tensorboard.
"""
if step is None:
step = self._step
else:
self._step = step
smd = tf.compat.v1.SummaryMetadata(
plugin_data=tf.compat.v1.SummaryMetadata.PluginData(plugin_name='text'))
if isinstance(textdata, (str, bytes)):
tensor = tf.make_tensor_proto(
values=[textdata.encode(encoding='utf_8')], shape=(1,))
else:
textdata = np.array(textdata) # convert lists, jax arrays, etc.
datashape = np.shape(textdata)
if len(datashape) == 1:
tensor = tf.make_tensor_proto(
values=[td.encode(encoding='utf_8') for td in textdata],
shape=(datashape[0],))
elif len(datashape) == 2:
tensor = tf.make_tensor_proto(
values=[
td.encode(encoding='utf_8') for td in np.reshape(textdata, -1)
],
shape=(datashape[0], datashape[1]))
summary = tf.compat.v1.Summary(
value=[tf.compat.v1.Summary.Value(
tag=tag, metadata=smd, tensor=tensor)])
self.add_summary(summary, step)
# Copied from gin/tf/utils.py:GinConfigSaverHook
示例12: deserialize_tensor_value
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def deserialize_tensor_value(value_proto):
"""Deserializes a tensor value from `executor_pb2.Value`.
Args:
value_proto: An instance of `executor_pb2.Value`.
Returns:
A tuple `(value, type_spec)`, where `value` is a Numpy array that represents
the deserialized value, and `type_spec` is an instance of `tff.TensorType`
that represents its type.
Raises:
TypeError: If the arguments are of the wrong types.
ValueError: If the value is malformed.
"""
py_typecheck.check_type(value_proto, executor_pb2.Value)
which_value = value_proto.WhichOneof('value')
if which_value != 'tensor':
raise ValueError('Not a tensor value: {}'.format(which_value))
# TODO(b/134543154): Find some way of creating the `TensorProto` using a
# proper public interface rather than creating a dummy value that we will
# overwrite right away.
tensor_proto = tf.make_tensor_proto(values=0)
if not value_proto.tensor.Unpack(tensor_proto):
raise ValueError('Unable to unpack the received tensor value.')
tensor_value = tf.make_ndarray(tensor_proto)
value_type = computation_types.TensorType(
dtype=tf.dtypes.as_dtype(tensor_proto.dtype),
shape=tf.TensorShape(tensor_proto.tensor_shape))
return tensor_value, value_type
示例13: pb
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def pb(tag, guest, display_name=None, description=None):
"""Create a greeting summary for the given guest.
Arguments:
tag: The string tag associated with the summary.
guest: The string name of the guest to greet.
display_name: If set, will be used as the display name in
TensorBoard. Defaults to `tag`.
description: A longform readable description of the summary data.
Markdown is supported.
"""
message = 'Hello, %s!' % guest
tensor = tf.make_tensor_proto(message, dtype=tf.string)
# We have no metadata to store, but we do need to add a plugin_data entry
# so that we know this summary is associated with the greeter plugin.
# We could use this entry to pass additional metadata other than the
# PLUGIN_NAME by using the content parameter.
summary_metadata = tf.SummaryMetadata(
display_name=display_name,
summary_description=description,
plugin_data=tf.SummaryMetadata.PluginData(
plugin_name=PLUGIN_NAME))
summary = tf.Summary()
summary.value.add(tag=tag,
metadata=summary_metadata,
tensor=tensor)
return summary
示例14: _BuildPredictRequests
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def _BuildPredictRequests(self, signature_name: Text,
serialized_input_key: Text):
for record in self._records:
request = predict_pb2.PredictRequest()
request.model_spec.name = self._model_name
request.model_spec.signature_name = signature_name
request.inputs[serialized_input_key].CopyFrom(
tf.make_tensor_proto([record]))
yield request
示例15: get_tf_value
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_tensor_proto [as 別名]
def get_tf_value(cls, value):
return make_tensor_proto(value.np_array, dtype=value.dtype)