當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.make_template方法代碼示例

本文整理匯總了Python中tensorflow.make_template方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.make_template方法的具體用法?Python tensorflow.make_template怎麽用?Python tensorflow.make_template使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.make_template方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reuse_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def reuse_variables(scope):
    """
    A decorator for transparent reuse of tensorflow
    `Variables <https://www.tensorflow.org/api_docs/python/tf/Variable>`_ in a
    function. The decorated function will automatically create variables the
    first time they are called and reuse them thereafter.

    .. note::

        This decorator is internally implemented by tensorflow's
        :func:`make_template` function. See `its doc
        <https://www.tensorflow.org/api_docs/python/tf/make_template>`_
        for requirements on the target function.

    :param scope: A string. The scope name passed to tensorflow
        `variable_scope()
        <https://www.tensorflow.org/api_docs/python/tf/variable_scope>`_.
    """
    return lambda f: tf.make_template(scope, f) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:21,代碼來源:utils.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, summaries=None, summary_labels=None):
        """
        Creates a new optimizer instance.
        """
        self.variables = dict()
        self.summaries = summaries
        if summary_labels is None:
            self.summary_labels = dict()
        else:
            self.summary_labels = summary_labels

        def custom_getter(getter, name, registered=False, **kwargs):
            variable = getter(name=name, registered=True, **kwargs)
            if not registered:
                assert kwargs.get('trainable', False)
                self.variables[name] = variable
            return variable

        # TensorFlow function
        self.step = tf.make_template(
            name_='step',
            func_=self.tf_step,
            custom_getter=custom_getter
        ) 
開發者ID:rec-agent,項目名稱:rec-rl,代碼行數:26,代碼來源:optimizer.py

示例3: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, scope='preprocessor', summary_labels=None):
        self.summary_labels = set(summary_labels or ())
        self.variables = dict()
        self.summaries = list()

        def custom_getter(getter, name, registered=False, **kwargs):
            variable = getter(name=name, registered=True, **kwargs)
            if not registered:
                self.variables[name] = variable
            return variable

        self.process = tf.make_template(
            name_=(scope + '/process'),
            func_=self.tf_process,
            custom_getter_=custom_getter
        ) 
開發者ID:rec-agent,項目名稱:rec-rl,代碼行數:18,代碼來源:preprocessor.py

示例4: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, scope='exploration', summary_labels=None):
        self.summary_labels = set(summary_labels or ())

        self.variables = dict()
        self.summaries = list()

        def custom_getter(getter, name, registered=False, **kwargs):
            variable = getter(name=name, registered=True, **kwargs)
            if not registered:
                self.variables[name] = variable
            return variable

        self.explore = tf.make_template(
            name_=(scope + '/explore'),
            func_=self.tf_explore,
            custom_getter_=custom_getter
        ) 
開發者ID:rec-agent,項目名稱:rec-rl,代碼行數:19,代碼來源:exploration.py

示例5: init_fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def init_fprop(self):
    """Initializes self.fprop. This should be called from subclasses' ctors.

    This function will contruct all of the variables defined with
    tf.get_variable in the sub classes fprop method and make a template
    out of the fprop method. In this way, instead of using variable scopes
    for variable reuse, the instantiation of the subclass will construct all
    of the model variables, and subsequent calls of the objects fprop method
    will add the fprop ops to the tensorflow graph using the tf variables
    which were defined when init_fprop was first called. This way variable
    reuse is trival by simply called model.fprop on different tensors. If you
    don't want to reuse variables, you will instead define a different model
    object.
    """
    scope_name = self.__class__.__name__

    self.fprop = tf.make_template(
        scope_name, self._fprop, create_scope_now_=True)

    if getattr(self.hparams, "use_placeholders", True):
      # Call self.fprop() to initialize variables in a dummy name scope
      # to manage the pollution
      with tf.name_scope("UNUSED"):
        args, kwargs = self.get_fprop_placeholders()
        self.fprop(*args, **kwargs) 
開發者ID:brain-research,項目名稱:mpnn,代碼行數:27,代碼來源:mpnn.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(
      self, state_size, belief_size, embed_size,
      mean_only=False, min_stddev=1e-1, activation=tf.nn.elu,
      encoder_to_decoder=False, sample_to_sample=True,
      sample_to_encoder=True, decoder_to_encoder=False,
      decoder_to_sample=True, action_to_decoder=False):
    self._state_size = state_size
    self._belief_size = belief_size
    self._embed_size = embed_size
    self._encoder_cell = tf.contrib.rnn.GRUBlockCell(self._belief_size)
    self._decoder_cell = tf.contrib.rnn.GRUBlockCell(self._belief_size)
    self._kwargs = dict(units=self._embed_size, activation=tf.nn.relu)
    self._mean_only = mean_only
    self._min_stddev = min_stddev
    self._encoder_to_decoder = encoder_to_decoder
    self._sample_to_sample = sample_to_sample
    self._sample_to_encoder = sample_to_encoder
    self._decoder_to_encoder = decoder_to_encoder
    self._decoder_to_sample = decoder_to_sample
    self._action_to_decoder = action_to_decoder
    posterior_tpl = tf.make_template('posterior', self._posterior)
    super(DRNN, self).__init__(posterior_tpl, posterior_tpl) 
開發者ID:google-research,項目名稱:planet,代碼行數:24,代碼來源:drnn.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(
      self, state_size, belief_size, embed_size,
      future_rnn=True, mean_only=False, min_stddev=0.1, activation=tf.nn.elu,
      num_layers=1):
    self._state_size = state_size
    self._belief_size = belief_size
    self._embed_size = embed_size
    self._future_rnn = future_rnn
    self._cell = tf.contrib.rnn.GRUBlockCell(self._belief_size)
    self._kwargs = dict(units=self._embed_size, activation=activation)
    self._mean_only = mean_only
    self._min_stddev = min_stddev
    self._num_layers = num_layers
    super(RSSM, self).__init__(
        tf.make_template('transition', self._transition),
        tf.make_template('posterior', self._posterior)) 
開發者ID:google-research,項目名稱:planet,代碼行數:18,代碼來源:rssm.py

示例8: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, arch, normalizers=None):
        '''
        Variational Auto Encoder (VAE)
        Arguments:
            `arch`: network architecture (`dict`)
        '''
        self.arch = arch
        self.normalizers = normalizers
        self.feat_type = arch['feat_type']

        with tf.name_scope('SpeakerCode'):
            self.y_emb = self._l2_regularized_embedding(
                self.arch['y_dim'],
                self.arch['z_dim'],
                'y_embedding')

        self.enc = tf.make_template(
            'Encoder',
            self.encoder)
        
        self.dec = tf.make_template(
            'Decoder',
            self.decoder) 
開發者ID:unilight,項目名稱:cdvae-vc,代碼行數:25,代碼來源:vae.py

示例9: templatemethod

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def templatemethod(name_):
  """This decorator wraps a method with `tf.make_template`. For example,

  @templatemethod
  def my_method():
    # Create variables
  """

  def template_decorator(func):
    """Inner decorator function"""

    def func_wrapper(*args, **kwargs):
      """Inner wrapper function"""
      templated_func = tf.make_template(name_, func)
      return templated_func(*args, **kwargs)

    return func_wrapper

  return template_decorator 
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:21,代碼來源:graph_utils.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, hparams=None):
        if not hasattr(self, '_hparams'):
            self._hparams = HParams(hparams, self.default_hparams())
        else:
            # Probably already parsed by subclasses. We rely on subclass
            # implementations to get this right.
            # As a sanity check, we require `hparams` to be `None` in this case.
            if hparams is not None:
                raise ValueError(
                    "`self._hparams` already exists. Argument `hparams` "
                    "must be set to `None` in this case.")
        self._template = tf.make_template(self._hparams.name, self._build,
                                          create_scope_now_=True)
        self._unique_name = self.variable_scope.name.split("/")[-1]
        self._trainable_variables = []
        self._built = False 
開發者ID:asyml,項目名稱:texar,代碼行數:18,代碼來源:module_base.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, dequant_flow):
        super().__init__()
        assert isinstance(dequant_flow, Flow)
        self.dequant_flow = dequant_flow

        def deep_processor(x, *, init, ema, dropout_p):
            (this, that), _ = CheckerboardSplit().forward(x)
            processed_context = conv2d(tf.concat([this, that], 3), name='proj', num_units=32, init=init, ema=ema)
            for i in range(5):
                processed_context = gated_resnet(
                    processed_context, name='c{}'.format(i),
                    a=None, dropout_p=dropout_p, ema=ema, init=init,
                    use_nin=False
                )
                processed_context = norm(processed_context, name='dqln{}'.format(i), ema=ema)
                
            return processed_context

        self.context_proc = tf.make_template("context_proc", deep_processor) 
開發者ID:aravindsrinivas,項目名稱:flowpp,代碼行數:21,代碼來源:celeba64_5bit_official.py

示例12: define_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def define_graph(config):
  network_tpl = tf.make_template('network', network, config=config)
  inputs = tf.placeholder(tf.float32, [None, config.num_inputs])
  targets = tf.placeholder(tf.float32, [None, 1])
  num_visible = tf.placeholder(tf.int32, [])
  batch_size = tf.shape(inputs)[0]
  data_dist = network_tpl(inputs)
  losses = [
      -data_dist.log_prob(targets),
  ]
  loss = sum(tf.reduce_sum(loss) for loss in losses) / tf.to_float(batch_size)
  optimizer = tf.train.AdamOptimizer(config.learning_rate)
  gradients, variables = zip(*optimizer.compute_gradients(
      loss, colocate_gradients_with_ops=True))
  if config.clip_gradient:
    gradients, _ = tf.clip_by_global_norm(gradients, config.clip_gradient)
  optimize = optimizer.apply_gradients(zip(gradients, variables))
  data_mean = data_dist.mean()
  data_noise = data_dist.stddev()
  data_uncertainty = data_dist.stddev()
  return tools.AttrDict(locals()) 
開發者ID:brain-research,項目名稱:ncp,代碼行數:23,代碼來源:det.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self,
               f,
               g,
               num_layers=1,
               f_side_input=None,
               g_side_input=None,
               use_efficient_backprop=True):

    if isinstance(f, list):
      assert len(f) == num_layers
    else:
      f = [f] * num_layers

    if isinstance(g, list):
      assert len(g) == num_layers
    else:
      g = [g] * num_layers

    scope_prefix = "revblock/revlayer_%d/"
    f_scope = scope_prefix + "f"
    g_scope = scope_prefix + "g"

    f = [
        tf.make_template(f_scope % i, fn, create_scope_now_=True)
        for i, fn in enumerate(f)
    ]
    g = [
        tf.make_template(g_scope % i, fn, create_scope_now_=True)
        for i, fn in enumerate(g)
    ]

    self.f = f
    self.g = g

    self.num_layers = num_layers
    self.f_side_input = f_side_input or []
    self.g_side_input = g_side_input or []

    self._use_efficient_backprop = use_efficient_backprop 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:41,代碼來源:rev_block.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, hparams=None):
        self._hparams = HParams(hparams, self.default_hparams())
        self._template = tf.make_template(self._hparams.name, self._build,
                                          create_scope_now_=True)
        self._unique_name = self.variable_scope.name.split("/")[-1]
        self._trainable_variables = []
        self._built = False 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:9,代碼來源:module_base.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_template [as 別名]
def __init__(self, env_config, hparams=None):
        AgentBase.__init__(self, hparams)

        self._env_config = env_config

        self._reset_tmplt_fn = tf.make_template(
            "{}_reset".format(self.name), self._reset)
        self._observe_tmplt_fn = tf.make_template(
            "{}_observe".format(self.name), self._observe)
        self._get_action_tmplt_fn = tf.make_template(
            "{}_get_action".format(self.name), self._get_action) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:13,代碼來源:episodic_agent_base.py


注:本文中的tensorflow.make_template方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。