當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.make_ndarray方法代碼示例

本文整理匯總了Python中tensorflow.make_ndarray方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.make_ndarray方法的具體用法?Python tensorflow.make_ndarray怎麽用?Python tensorflow.make_ndarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.make_ndarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_grpc_request_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def make_grpc_request_fn(servable_name, server, timeout_secs):
  """Wraps function to make grpc requests with runtime args."""
  stub = _create_stub(server)

  def _make_grpc_request(examples):
    """Builds and sends request to TensorFlow model server."""
    request = predict_pb2.PredictRequest()
    request.model_spec.name = servable_name
    request.inputs["input"].CopyFrom(
        tf.contrib.util.make_tensor_proto(
            [ex.SerializeToString() for ex in examples], shape=[len(examples)]))
    response = stub.Predict(request, timeout_secs)
    outputs = tf.make_ndarray(response.outputs["outputs"])
    scores = tf.make_ndarray(response.outputs["scores"])
    assert len(outputs) == len(scores)
    return [{
        "outputs": outputs[i],
        "scores": scores[i]
    } for i in range(len(outputs))]

  return _make_grpc_request 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:serving_utils.py

示例2: make_grpc_request_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def make_grpc_request_fn(servable_name, server, timeout_secs):
  """Wraps function to make grpc requests with runtime args."""
  stub = _create_stub(server)

  def _make_grpc_request(examples):
    """Builds and sends request to TensorFlow model server."""
    request = predict_pb2.PredictRequest()
    request.model_spec.name = servable_name
    request.inputs["input"].CopyFrom(
        tf.make_tensor_proto(
            [ex.SerializeToString() for ex in examples], shape=[len(examples)]))
    response = stub.Predict(request, timeout_secs)
    outputs = tf.make_ndarray(response.outputs["outputs"])
    scores = tf.make_ndarray(response.outputs["scores"])
    assert len(outputs) == len(scores)
    return [{  # pylint: disable=g-complex-comprehension
        "outputs": output,
        "scores": score
    } for output, score in zip(outputs, scores)]

  return _make_grpc_request 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:serving_utils.py

示例3: extract_prediction

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def extract_prediction(result):
  """Parses a translation result.

  Args:
    result: A `PredictResponse` proto.

  Returns:
    A generator over the hypotheses.
  """
  batch_lengths = tf.make_ndarray(result.outputs["length"])
  batch_predictions = tf.make_ndarray(result.outputs["tokens"])
  for hypotheses, lengths in zip(batch_predictions, batch_lengths):
    # Only consider the first hypothesis (the best one).
    best_hypothesis = hypotheses[0].tolist()
    best_length = lengths[0]
    if best_hypothesis[best_length - 1] == b"</s>":
      best_length -= 1
    yield best_hypothesis[:best_length] 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:20,代碼來源:ende_client.py

示例4: test_predict_successful

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def test_predict_successful(mocker, get_grpc_service_for_predict,
                            get_fake_model):
    results_mock = mocker.patch(
        'ie_serving.server.request.Request.wait_for_result')
    expected_response = np.ones(shape=(2, 2))
    results_mock.return_value = ({'output': expected_response}, 0)

    request = get_fake_request(model_name='test',
                               data_shape=(1, 1, 1), input_blob='input')
    grpc_server = get_grpc_service_for_predict
    rpc = grpc_server.invoke_unary_unary(
            PREDICT_SERVICE.methods_by_name['Predict'],
            (),
            request, None)
    rpc.initial_metadata()
    response, trailing_metadata, code, details = rpc.termination()

    encoded_response = make_ndarray(response.outputs['output'])
    assert get_fake_model.default_version == response.model_spec.version.value
    assert grpc.StatusCode.OK == code
    assert expected_response.shape == encoded_response.shape 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:23,代碼來源:test_predict_grpc.py

示例5: test_predict_successful_version

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def test_predict_successful_version(mocker, get_grpc_service_for_predict):
    results_mock = mocker.patch(
        'ie_serving.server.request.Request.wait_for_result')
    expected_response = np.ones(shape=(2, 2))
    results_mock.return_value = ({'output': expected_response}, None)
    requested_version = 1
    request = get_fake_request(model_name='test', data_shape=(1, 1, 1),
                               input_blob='input', version=requested_version)
    grpc_server = get_grpc_service_for_predict
    rpc = grpc_server.invoke_unary_unary(
        PREDICT_SERVICE.methods_by_name['Predict'],
        (),
        request, None)
    rpc.initial_metadata()
    response, trailing_metadata, code, details = rpc.termination()

    encoded_response = make_ndarray(response.outputs['output'])
    assert requested_version == response.model_spec.version.value
    assert grpc.StatusCode.OK == code
    assert expected_response.shape == encoded_response.shape 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:22,代碼來源:test_predict_grpc.py

示例6: test_prepare_output_as_list

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def test_prepare_output_as_list(serialization_function, outputs_names, shapes,
                                types):
    outputs = {}
    x = 0
    for key, value in outputs_names.items():
        outputs[value] = np.ones(shape=shapes[x], dtype=types[x])
        x += 1

    output = SERIALIZATION_FUNCTIONS[serialization_function](
        inference_output=outputs, model_available_outputs=outputs_names)

    x = 0
    for key, value in outputs_names.items():
        temp_output = make_ndarray(output.outputs[key])
        assert temp_output.shape == shapes[x]
        assert temp_output.dtype == types[x]
        x += 1 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:19,代碼來源:test_predict_utils.py

示例7: cal_tensor_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def cal_tensor_value(tensor):  # type: (tensorflow.Tensor)->Union[np.ndarray, None]
    if _count_input_nodes(tensor) < 0:
        return None

    node = tensor.op
    if node.type in ["Const", "ConstV2"]:
        make_ndarray = tensorflow.make_ndarray
        np_arr = make_ndarray(node.get_attr("value"))
        return np_arr
    else:
        try:
            cls_sess = tensorflow.Session if hasattr(tensorflow, 'Session') else tensorflow.compat.v1.Session
            with cls_sess(graph=node.graph) as sess:
                np_arr = sess.run(tensor)
                return np_arr
        except (ValueError, tensorflow.errors.InvalidArgumentError, tensorflow.errors.OpError):
            return None 
開發者ID:onnx,項目名稱:keras-onnx,代碼行數:19,代碼來源:_tf_utils.py

示例8: histograms_impl

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def histograms_impl(self, tag, run, downsample_to=50):
    """Result of the form `(body, mime_type)`, or `ValueError`.

    At most `downsample_to` events will be returned. If this value is
    `None`, then no downsampling will be performed.
    """
    try:
      tensor_events = self._multiplexer.Tensors(run, tag)
    except KeyError:
      raise ValueError('No histogram tag %r for run %r' % (tag, run))
    events = [[ev.wall_time, ev.step, tf.make_ndarray(ev.tensor_proto).tolist()]
              for ev in tensor_events]
    if downsample_to is not None and len(events) > downsample_to:
      indices = sorted(random.Random(0).sample(list(range(len(events))),
                                               downsample_to))
      events = [events[i] for i in indices]
    return (events, 'application/json') 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:19,代碼來源:histograms_plugin.py

示例9: deserialize_tensor_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def deserialize_tensor_value(value_proto):
  """Deserializes a tensor value from `executor_pb2.Value`.

  Args:
    value_proto: An instance of `executor_pb2.Value`.

  Returns:
    A tuple `(value, type_spec)`, where `value` is a Numpy array that represents
    the deserialized value, and `type_spec` is an instance of `tff.TensorType`
    that represents its type.

  Raises:
    TypeError: If the arguments are of the wrong types.
    ValueError: If the value is malformed.
  """
  py_typecheck.check_type(value_proto, executor_pb2.Value)
  which_value = value_proto.WhichOneof('value')
  if which_value != 'tensor':
    raise ValueError('Not a tensor value: {}'.format(which_value))

  # TODO(b/134543154): Find some way of creating the `TensorProto` using a
  # proper public interface rather than creating a dummy value that we will
  # overwrite right away.
  tensor_proto = tf.make_tensor_proto(values=0)
  if not value_proto.tensor.Unpack(tensor_proto):
    raise ValueError('Unable to unpack the received tensor value.')

  tensor_value = tf.make_ndarray(tensor_proto)
  value_type = computation_types.TensorType(
      dtype=tf.dtypes.as_dtype(tensor_proto.dtype),
      shape=tf.TensorShape(tensor_proto.tensor_shape))

  return tensor_value, value_type 
開發者ID:tensorflow,項目名稱:federated,代碼行數:35,代碼來源:executor_service_utils.py

示例10: infer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def infer(img, input_tensor, grpc_stub, model_spec_name,
          model_spec_version, output_tensors):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_spec_name
    if model_spec_version is not None:
        request.model_spec.version.value = model_spec_version
    print("input shape ", img.shape)
    request.inputs[input_tensor].CopyFrom(
        make_tensor_proto(img, shape=list(img.shape)))
    result = grpc_stub.Predict(request, 10.0)
    data = {}
    for output_tensor in output_tensors:
        data[output_tensor] = make_ndarray(result.outputs[output_tensor])
    return data 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:16,代碼來源:grpc.py

示例11: extract_values

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def extract_values(reader, tag):
  events = reader.Tensors('run', tag)
  steps = [event.step for event in events]
  times = [event.wall_time for event in events]
  values = [tf.make_ndarray(event.tensor_proto) for event in events]
  return steps, times, values 
開發者ID:google-research,項目名稱:planet,代碼行數:8,代碼來源:fetch_events.py

示例12: extract_scalar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def extract_scalar(multiplexer, run_name, tag):
    tensor_events = multiplexer.Tensors(run_name, tag)
    data = {'wall_time': [], 'step': [], 'value': []}
    for event in tensor_events:
        data['wall_time'].append(event.wall_time)
        data['step'].append(event.step)
        data['value'].append(tf.make_ndarray(event.tensor_proto).item())
    return pd.DataFrame(data) 
開發者ID:cts198859,項目名稱:deeprl_signal_control,代碼行數:10,代碼來源:extract_tensorboard.py

示例13: tf2summary2dict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def tf2summary2dict(path, tags=[]):
    serialized_examples = tf.data.TFRecordDataset(path)
    data = {}
    for serialized_example in serialized_examples:
        event = event_pb2.Event.FromString(serialized_example.numpy())
        for value in event.summary.value:
            if value.tag in tags or tags == []:
                t = tf.make_ndarray(value.tensor)
                t = float(t)
                try:
                    data[f'{value.tag}'].append([t, event.step])
                except:
                    data[f'{value.tag}'] = [[t, event.step]]
                    pass
    return data 
開發者ID:StepNeverStop,項目名稱:RLs,代碼行數:17,代碼來源:tf2_summary.py

示例14: convert_tensor_to_gif_summary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def convert_tensor_to_gif_summary(summ):
    if isinstance(summ, bytes):
        summary_proto = tf.Summary()
        summary_proto.ParseFromString(summ)
        summ = summary_proto

    summary = tf.Summary()
    for value in summ.value:
        tag = value.tag
        try:
            images_arr = tf.make_ndarray(value.tensor)
        except TypeError:
            summary.value.add(tag=tag, image=value.image)
            continue

        if len(images_arr.shape) == 5:
            images_arr = np.concatenate(list(images_arr), axis=-2)
        if len(images_arr.shape) != 4:
            raise ValueError('Tensors must be 4-D or 5-D for gif summary.')
        channels = images_arr.shape[-1]
        if channels < 1 or channels > 4:
            raise ValueError('Tensors must have 1, 2, 3, or 4 color channels for gif summary.')

        encoded_image_string = ffmpeg_gif.encode_gif(images_arr, fps=4)

        image = tf.Summary.Image()
        image.height = images_arr.shape[-3]
        image.width = images_arr.shape[-2]
        image.colorspace = channels  # 1: grayscale, 2: grayscale + alpha, 3: RGB, 4: RGBA
        image.encoded_image_string = encoded_image_string
        summary.value.add(tag=tag, image=image)
    return summary 
開發者ID:alexlee-gk,項目名稱:video_prediction,代碼行數:34,代碼來源:tf_utils.py

示例15: _process_string_tensor_event

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import make_ndarray [as 別名]
def _process_string_tensor_event(self, event):
    """Convert a TensorEvent into a JSON-compatible response."""
    string_arr = tf.make_ndarray(event.tensor_proto)
    text = string_arr.astype(np.dtype(str)).tostring()
    return {
        'wall_time': event.wall_time,
        'step': event.step,
        'text': text,
    } 
開發者ID:tensorflow,項目名稱:tensorboard-plugin-example,代碼行數:11,代碼來源:greeter_plugin.py


注:本文中的tensorflow.make_ndarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。