當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.logical_xor方法代碼示例

本文整理匯總了Python中tensorflow.logical_xor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.logical_xor方法的具體用法?Python tensorflow.logical_xor怎麽用?Python tensorflow.logical_xor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.logical_xor方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBCast

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def testBCast(self):
    shapes = [
        ([1, 3, 2], [1]),
        ([1, 3, 2], [2]),
        ([1, 3, 2], [3, 2]),
        ([1, 3, 2], [3, 1]),
        ([1, 3, 2], [1, 3, 2]),
        ([1, 3, 2], [2, 3, 1]),
        ([1, 3, 2], [2, 1, 1]),
        ([1, 3, 2], [1, 3, 1]),
        ([2, 1, 5], [2, 3, 1]),
        ([2, 0, 5], [2, 0, 1]),
        ([2, 3, 0], [2, 3, 1]),
    ]
    for (xs, ys) in shapes:
      x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs)
      y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys)
      for use_gpu in [True, False]:
        self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu)
        self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu)
        self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:cwise_ops_test.py

示例2: __xor__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def __xor__(self, other):
        return tf.logical_xor(self, other) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:4,代碼來源:utils.py

示例3: __rxor__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def __rxor__(self, other):
        return tf.logical_xor(other, self)

    # boolean operations 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:6,代碼來源:utils.py

示例4: testScalar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def testScalar(self):
    data = [np.array([True]), np.array([False])]
    for use_gpu in [True, False]:
      for x in data:
        self._not(x, use_gpu)
      for x in data:
        for y in data:
          self._compareBinary(
              x, y, np.logical_and, tf.logical_and, use_gpu)
          self._compareBinary(
              x, y, np.logical_or, tf.logical_or, use_gpu)
          self._compareBinary(
              x, y, np.logical_xor, tf.logical_xor, use_gpu) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:15,代碼來源:cwise_ops_test.py

示例5: testTensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def testTensor(self):
    x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
    y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
    for use_gpu in [True, False]:
      self._not(x, use_gpu)
      self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu)
      self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu)
      self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:cwise_ops_test.py

示例6: testShapeMismatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def testShapeMismatch(self):
    x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
    y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1)
    for f in [tf.logical_and, tf.logical_or, tf.logical_xor]:
      with self.assertRaisesWithPredicateMatch(
          ValueError, lambda e: "Dimensions must" in str(e)):
        f(x, y) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:cwise_ops_test.py

示例7: testOverloadComparisons

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def testOverloadComparisons(self):
    dtypes = [
        tf.float16,
        tf.float32,
        tf.float64,
        tf.int32,
        tf.int64,
    ]
    funcs = [
        (np.less, _LT),
        (np.less_equal, _LE),
        (np.greater, _GT),
        (np.greater_equal, _GE),
    ]
    for dtype in dtypes:
      for np_func, tf_func in funcs:
        self._compareBinary(10, 5, dtype, np_func, tf_func)
    logical_funcs = [
        (np.logical_and, _AND),
        (np.logical_or, _OR),
        (np.logical_xor, _XOR),
        (np.equal, tf.equal),
        (np.not_equal, tf.not_equal)
    ]
    for np_func, tf_func in logical_funcs:
      self._compareBinary(True, False, tf.bool, np_func, tf_func)
      self._compareBinary(True, True, tf.bool, np_func, tf_func)
      self._compareBinary(False, False, tf.bool, np_func, tf_func)
      self._compareBinary(False, True, tf.bool, np_func, tf_func)
      self._compareBinary([True, True, False, False],
                          [True, False, True, False],
                          tf.bool, np_func, tf_func)
    self._compareUnary(True, tf.bool, np.logical_not, _INV)
    self._compareUnary(False, tf.bool, np.logical_not, _INV)
    self._compareUnary([True, False], tf.bool, np.logical_not, _INV) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:37,代碼來源:cwise_ops_test.py

示例8: visit_xor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def visit_xor(self, op: d5.ops.Xor, network: TensorflowNetwork):
        A, B = network.fetch_internal_tensors([op.i_A, op.i_B])
        C = tf.logical_xor(A, B)
        network.feed_internal_tensor(op.o_C, C) 
開發者ID:deep500,項目名稱:deep500,代碼行數:6,代碼來源:tf_visitor_impl.py

示例9: test_logical_xor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def test_logical_xor():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_xor(in1, in2, name='out')
        in_data1 = np.random.choice(
            a=[False, True], size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(
            a=[False, True], size=(1, 4, 4, 3)).astype('bool')
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0') 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:12,代碼來源:test_forward.py

示例10: desc_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_xor [as 別名]
def desc_loss(dists, pids, pos_margin=0.1, neg_margin=1.4, false_negative_mask=None):
    """Computes the contrastive loss.

    Args:
        dists (2D tensor): A square all-to-all distance matrix as given by cdist.
        pids (1D tensor): The identities of the entries in `batch`, shape (B,).
            This can be of any type that can be compared, thus also a string.
        pos_margin, neg_margin (float): the margin for contrastive loss
        false_negative_mask (2D tensor): A boolean matrix to indicate the false negative within the safe_radius.

    Returns:
        A 1D tensor of shape (B,) containing the loss value for each sample.
    """
    with tf.name_scope("desc_loss"):
        same_identity_mask = tf.equal(tf.expand_dims(pids, axis=1),
                                      tf.expand_dims(pids, axis=0))
        negative_mask = tf.logical_not(same_identity_mask)
        if false_negative_mask is not None: 
            negative_mask = tf.logical_and(negative_mask, tf.logical_not(false_negative_mask))
            negative_mask.set_shape([None, None])
        # positive_mask = tf.logical_xor(same_identity_mask,
        #                              tf.eye(tf.shape(pids)[0], dtype=tf.bool))

        furthest_positive = tf.reduce_max(dists * tf.cast(same_identity_mask, tf.float32), axis=1)
        # closest_negative = tf.map_fn(lambda x: tf.reduce_min(tf.boolean_mask(x[0], x[1])), (dists, negative_mask), tf.float32)
        closest_negative = tf.reduce_min(dists + 1e5 * tf.cast(same_identity_mask, tf.float32), axis=1)
        # Another way of achieving the same, though more hacky:
        # closest_negative_col = tf.reduce_min(dists + 1e5*tf.cast(same_identity_mask, tf.float32), axis=1)
        # closest_negative_row = tf.reduce_min(dists + 1e5*tf.cast(same_identity_mask, tf.float32), axis=0)
        # closest_negative = tf.minimum(closest_negative_col, closest_negative_row)

        # # calculate average negative to monitor the training
        # average_negative = tf.map_fn(lambda x: tf.reduce_mean(tf.boolean_mask(x[0], x[1])), (dists, negative_mask), tf.float32)
        average_negative = tf.reduce_mean(dists * tf.cast(negative_mask,  tf.float32)) * tf.cast(tf.size(pids), tf.float32) / (tf.cast(tf.size(pids), tf.float32) - 1.0)
        # average_diff = tf.reduce_mean(furthest_positive - average_negative)
        diff = furthest_positive - closest_negative
        accuracy = tf.reduce_sum(tf.cast(tf.greater_equal(0., diff), tf.float32)) / tf.cast(tf.shape(diff)[0], tf.float32)

        # contrastive loss
        diff = tf.maximum(furthest_positive - pos_margin, 0.0) + tf.maximum(neg_margin - closest_negative, 0.0)
        return tf.reduce_mean(diff), accuracy, tf.reduce_mean(furthest_positive), tf.reduce_mean(average_negative) 
開發者ID:XuyangBai,項目名稱:D3Feat,代碼行數:43,代碼來源:loss.py


注:本文中的tensorflow.logical_xor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。