當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.logical_or方法代碼示例

本文整理匯總了Python中tensorflow.logical_or方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.logical_or方法的具體用法?Python tensorflow.logical_or怎麽用?Python tensorflow.logical_or使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.logical_or方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros_like(self._observ),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          # TODO(piotrmilos): possibly ignore envs with done
          r0 = tf.maximum(a[0], self._batch_env.observ)
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)

          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      simulate_ret = [ret[-1, ...] for ret in simulate_ret]

      with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
        return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:tf_atari_wrappers.py

示例2: _filter_input_rows

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def _filter_input_rows(self, *row_parts) -> tf.bool:
        row_parts = self.model_input_tensors_former.from_model_input_form(row_parts)

        #assert all(tensor.shape == (self.config.MAX_CONTEXTS,) for tensor in
        #           {row_parts.path_source_token_indices, row_parts.path_indices,
        #            row_parts.path_target_token_indices, row_parts.context_valid_mask})

        # FIXME: Does "valid" here mean just "no padding" or "neither padding nor OOV"? I assumed just "no padding".
        any_word_valid_mask_per_context_part = [
            tf.not_equal(tf.reduce_max(row_parts.path_source_token_indices, axis=0),
                         self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
            tf.not_equal(tf.reduce_max(row_parts.path_target_token_indices, axis=0),
                         self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
            tf.not_equal(tf.reduce_max(row_parts.path_indices, axis=0),
                         self.vocabs.path_vocab.word_to_index[self.vocabs.path_vocab.special_words.PAD])]
        any_contexts_is_valid = reduce(tf.logical_or, any_word_valid_mask_per_context_part)  # scalar

        if self.estimator_action.is_evaluate:
            cond = any_contexts_is_valid  # scalar
        else:  # training
            word_is_valid = tf.greater(
                row_parts.target_index, self.vocabs.target_vocab.word_to_index[self.vocabs.target_vocab.special_words.OOV])  # scalar
            cond = tf.logical_and(word_is_valid, any_contexts_is_valid)  # scalar

        return cond  # scalar 
開發者ID:tech-srl,項目名稱:code2vec,代碼行數:27,代碼來源:path_context_reader.py

示例3: Uniform

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def Uniform(name=None):
    X = tf.placeholder(config.dtype, name=name)

    Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))

    def integral(lower, upper):
        return tf.cond(
            tf.logical_or(
                tf.is_inf(tf.cast(lower, config.dtype)),
                tf.is_inf(tf.cast(upper, config.dtype))
            ),
            lambda: tf.constant(1, dtype=config.dtype),
            lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
        )

    Distribution.integral = integral

    return X 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:20,代碼來源:uniform.py

示例4: UniformInt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def UniformInt(name=None):
    X = tf.placeholder(config.int_dtype, name=name)

    Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))

    def integral(lower, upper):
        val = tf.cond(
            tf.logical_or(
                tf.is_inf(tf.ceil(tf.cast(lower, config.dtype))),
                tf.is_inf(tf.floor(tf.cast(upper, config.dtype)))
            ),
            lambda: tf.constant(1, dtype=config.dtype),
            lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
        )
        return val

    Distribution.integral = integral

    return X 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:21,代碼來源:uniform.py

示例5: assert_binary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def assert_binary(tensor, name=None):
  """Asserts that all the values in the tensor are zeros or ones.

  Args:
    tensor: A tensor of shape `[A1, ..., An]` containing the values we want to
      check.
    name: A name for this op. Defaults to "assert_binary".

  Returns:
    The input tensor, with dependence on the assertion operator in the graph.

  Raises:
    tf.errors.InvalidArgumentError: If any of the values in the tensor is not
    zero or one.
  """
  if not FLAGS[tfg_flags.TFG_ADD_ASSERTS_TO_GRAPH].value:
    return tensor

  with tf.compat.v1.name_scope(name, 'assert_binary', [tensor]):
    tensor = tf.convert_to_tensor(value=tensor)
    condition = tf.reduce_all(
        input_tensor=tf.logical_or(tf.equal(tensor, 0), tf.equal(tensor, 1)))

    with tf.control_dependencies([tf.Assert(condition, data=[tensor])]):
      return tf.identity(tensor) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:27,代碼來源:asserts.py

示例6: _check_batch_beam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def _check_batch_beam(t, batch_size, beam_width):
  """Returns an Assert operation checking that the elements of the stacked
  TensorArray can be reshaped to [batch_size, beam_size, -1]. At this point,
  the TensorArray elements have a known rank of at least 1.
  """
  error_message = ("TensorArray reordering expects elements to be "
                   "reshapable to [batch_size, beam_size, -1] which is "
                   "incompatible with the dynamic shape of %s elements. "
                   "Consider setting reorder_tensor_arrays to False to disable "
                   "TensorArray reordering during the beam search."
                   % (t.name))
  rank = t.shape.ndims
  shape = tf.shape(t)
  if rank == 2:
    condition = tf.equal(shape[1], batch_size * beam_width)
  else:
    condition = tf.logical_or(
        tf.equal(shape[1], batch_size * beam_width),
        tf.logical_and(
            tf.equal(shape[1], batch_size),
            tf.equal(shape[2], beam_width)))
  return tf.Assert(condition, [error_message]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:24,代碼來源:beam_search_decoder.py

示例7: Attention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def Attention(Q, K, V, mononotic_attention=False, prev_max_attentions=None):
    '''
    Args:
      Q: Queries. (B, T/r, d)
      K: Keys. (B, N, d)
      V: Values. (B, N, d)
      mononotic_attention: A boolean. At training, it is False.
      prev_max_attentions: (B,). At training, it is set to None.

    Returns:
      R: [Context Vectors; Q]. (B, T/r, 2d)
      alignments: (B, N, T/r)
      max_attentions: (B, T/r)
    '''
    A = tf.matmul(Q, K, transpose_b=True) * tf.rsqrt(tf.to_float(hp.d))
    if mononotic_attention:  # for inference
        key_masks = tf.sequence_mask(prev_max_attentions, hp.max_N)
        reverse_masks = tf.sequence_mask(hp.max_N - hp.attention_win_size - prev_max_attentions, hp.max_N)[:, ::-1]
        masks = tf.logical_or(key_masks, reverse_masks)
        masks = tf.tile(tf.expand_dims(masks, 1), [1, hp.max_T, 1])
        paddings = tf.ones_like(A) * (-2 ** 32 + 1)  # (B, T/r, N)
        A = tf.where(tf.equal(masks, False), A, paddings)
    A = tf.nn.softmax(A) # (B, T/r, N)
    max_attentions = tf.argmax(A, -1)  # (B, T/r)
    R = tf.matmul(A, V)
    R = tf.concat((R, Q), -1)

    alignments = tf.transpose(A, [0, 2, 1]) # (B, N, T/r)

    return R, alignments, max_attentions 
開發者ID:Kyubyong,項目名稱:dc_tts,代碼行數:32,代碼來源:networks.py

示例8: _get_values_from_start_and_end

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def _get_values_from_start_and_end(self, input_tensor, num_start_samples,
                                     num_end_samples, total_num_samples):
    """slices num_start_samples and last num_end_samples from input_tensor.

    Args:
      input_tensor: An int32 tensor of shape [N] to be sliced.
      num_start_samples: Number of examples to be sliced from the beginning
        of the input tensor.
      num_end_samples: Number of examples to be sliced from the end of the
        input tensor.
      total_num_samples: Sum of is num_start_samples and num_end_samples. This
        should be a scalar.

    Returns:
      A tensor containing the first num_start_samples and last num_end_samples
      from input_tensor.

    """
    input_length = tf.shape(input_tensor)[0]
    start_positions = tf.less(tf.range(input_length), num_start_samples)
    end_positions = tf.greater_equal(
        tf.range(input_length), input_length - num_end_samples)
    selected_positions = tf.logical_or(start_positions, end_positions)
    selected_positions = tf.cast(selected_positions, tf.float32)
    indexed_positions = tf.multiply(tf.cumsum(selected_positions),
                                    selected_positions)
    one_hot_selector = tf.one_hot(tf.cast(indexed_positions, tf.int32) - 1,
                                  total_num_samples,
                                  dtype=tf.float32)
    return tf.cast(tf.tensordot(tf.cast(input_tensor, tf.float32),
                                one_hot_selector, axes=[0, 0]), tf.int32) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:33,代碼來源:balanced_positive_negative_sampler.py

示例9: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None,
                    reach_max_time=None):
        """Gets the inputs for next step."""
        finished = math_ops.equal(sample_ids, self._end_token)
        all_finished = math_ops.reduce_all(finished)
        if reach_max_time is not None:
            all_finished = tf.logical_or(all_finished, reach_max_time)

        if self._embedding_args_cnt == 1:
            del time, outputs  # unused by next_inputs_fn
            next_inputs = control_flow_ops.cond(
                all_finished,
                # If we're finished, the next_inputs value doesn't matter
                lambda: self._start_inputs,
                lambda: self._embedding_fn(sample_ids))
        elif self._embedding_args_cnt == 2:
            del outputs
            # Prepare the position embedding of the next step
            times = tf.ones(self._batch_size, dtype=tf.int32) * (time+1)
            next_inputs = control_flow_ops.cond(
                all_finished,
                # If we're finished, the next_inputs value doesn't matter
                lambda: self._start_inputs,
                lambda: self._embedding_fn(sample_ids, times))

        return finished, next_inputs, state 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:28,代碼來源:tf_helpers.py

示例10: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None,
                    reach_max_time=None):
        if self._use_finish:
            hard_ids = tf.argmax(sample_ids, axis=-1, output_type=tf.int32)
            finished = tf.equal(hard_ids, self._end_token)
        else:
            finished = tf.tile([False], [self._batch_size])
        all_finished = tf.reduce_all(finished)

        if reach_max_time is not None:
            all_finished = tf.logical_or(all_finished, reach_max_time)

        if self._stop_gradient:
            sample_ids = tf.stop_gradient(sample_ids)

        if self._embedding_args_cnt == 1:
            del time, outputs  # unused by next_inputs_fn
            next_inputs = tf.cond(
                all_finished,
                # If we're finished, the next_inputs value doesn't matter
                lambda: self._start_inputs,
                lambda: self._embedding_fn(soft_ids=sample_ids))
        elif self._embedding_args_cnt == 2:
            # Prepare the position embedding of the next step
            times = tf.ones(self._batch_size, dtype=tf.int32) * (time+1)
            next_inputs = tf.cond(
                all_finished,
                # If we're finished, the next_inputs value doesn't matter
                lambda: self._start_inputs,
                lambda: self._embedding_fn(soft_ids=sample_ids, times=times))

        return (finished, next_inputs, state) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:34,代碼來源:rnn_decoder_helpers.py

示例11: __or__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def __or__(self, other):
        return tf.logical_or(self, other) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:4,代碼來源:utils.py

示例12: __ror__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def __ror__(self, other):
        return tf.logical_or(other, self) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:4,代碼來源:utils.py

示例13: nearest3

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def nearest3(grid, idx, clip=False):
    with tf.variable_scope('NearestInterp'):
        _, h, w, d, f = grid.get_shape().as_list()
        x, y, z = idx[:, 1], idx[:, 2], idx[:, 3]
        g_val = tf.gather_nd(grid, tf.cast(tf.round(idx), 'int32'))
        if clip:
            x_inv = tf.logical_or(x < 0, x > h - 1)
            y_inv = tf.logical_or(y < 0, y > w - 1)
            z_inv = tf.logical_or(z < 0, x > d - 1)
            valid_idx = 1 - \
                tf.to_float(tf.logical_or(tf.logical_or(x_inv, y_inv), z_inv))
            g_val = g_val * valid_idx[tf.newaxis, ...]
        return g_val 
開發者ID:akar43,項目名稱:lsm,代碼行數:15,代碼來源:ops.py

示例14: set_logp_to_neg_inf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def set_logp_to_neg_inf(X, logp, bounds):
    """Set `logp` to negative infinity when `X` is outside the allowed bounds.

    # Arguments
        X: tensorflow.Tensor
            The variable to apply the bounds to
        logp: tensorflow.Tensor
            The log probability corrosponding to `X`
        bounds: list of `Region` objects
            The regions corrosponding to allowed regions of `X`

    # Returns
        logp: tensorflow.Tensor
            The newly bounded log probability
    """
    conditions = []
    for l, u in bounds:
        lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
        upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)

        if not lower_is_neg_inf and upper_is_pos_inf:
            conditions.append(tf.greater(X, l))
        elif lower_is_neg_inf and not upper_is_pos_inf:
            conditions.append(tf.less(X, u))
        elif not (lower_is_neg_inf or upper_is_pos_inf):
            conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))

    if len(conditions) > 0:
        is_inside_bounds = conditions[0]
        for condition in conditions[1:]:
            is_inside_bounds = tf.logical_or(is_inside_bounds, condition)

        logp = tf.select(
            is_inside_bounds,
            logp,
            tf.fill(tf.shape(X), config.dtype(-np.inf))
        )

    return logp 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:41,代碼來源:utilities.py

示例15: version_10

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_or [as 別名]
def version_10(cls, node, **kwargs):
    x = kwargs["tensor_dict"][node.inputs[0]]
    x_shape = tf_shape(x)
    scales = kwargs["tensor_dict"][node.inputs[1]]

    n_in_scales_is_one = tf.equal(scales[0], 1)
    c_in_scales_is_one = tf.logical_or(tf.equal(scales[1], 1),
                                       tf.equal(scales[3], 1))
    assert_n_c_in_scales_are_ones = tf.Assert(
        tf.logical_and(n_in_scales_is_one, c_in_scales_is_one), [scales])

    with tf.control_dependencies([assert_n_c_in_scales_are_ones]):
      x_in_NCHW_format = tf.equal(scales[1], 1)
      h_w_scale = tf.where(x_in_NCHW_format, scales[2:], scales[1:3])
      h_w_shape = tf.where(x_in_NCHW_format, x_shape[2:], x_shape[1:3])
      new_h_w_shape = tf.cast(h_w_scale * tf.cast(h_w_shape, scales.dtype),
                              tf.int32)

      mode = node.attrs.get("mode", "nearest")
      if mode.lower() == "linear":
        mode = tf.image.ResizeMethod.BILINEAR
      else:
        mode = tf.image.ResizeMethod.NEAREST_NEIGHBOR

      def process_NCHW_format(x):
        x_t = tf.transpose(x, perm=[0, 2, 3, 1])
        y = tf.image.resize(x_t, size=new_h_w_shape, method=mode)
        y_t = tf.transpose(y, perm=[0, 3, 1, 2])
        return y_t

      def process_NHWC_format(x):
        y = tf.image.resize(x, size=new_h_w_shape, method=mode)
        return y

      output = tf.cond(x_in_NCHW_format, lambda: process_NCHW_format(x),
                       lambda: process_NHWC_format(x))

      return [output] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:40,代碼來源:resize.py


注:本文中的tensorflow.logical_or方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。