當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.logical_not方法代碼示例

本文整理匯總了Python中tensorflow.logical_not方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.logical_not方法的具體用法?Python tensorflow.logical_not怎麽用?Python tensorflow.logical_not使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.logical_not方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:ops.py

示例2: filter_groundtruth_with_crowd_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_groundtruth_with_crowd_boxes(tensor_dict):
  """Filters out groundtruth with boxes corresponding to crowd.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
    is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
    is_not_crowd = tf.logical_not(is_crowd)
    is_not_crowd_indices = tf.where(is_not_crowd)
    tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
  return tensor_dict 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:25,代碼來源:ops.py

示例3: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:26,代碼來源:ops.py

示例4: compute_loss_and_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def compute_loss_and_error(logits, label, label_smoothing):
        loss = sparse_softmax_cross_entropy(
                logits=logits, labels=label,
                label_smoothing = label_smoothing,
                weights=1.0)
        loss = tf.reduce_mean(loss, name='xentropy-loss')

        def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'):
            with tf.name_scope('prediction_incorrect'):
                x = tf.logical_not(tf.nn.in_top_k(logits, label, topk))
            return tf.cast(x, tf.float32, name=name)
        
        if label.shape.ndims > 1:
            label = tf.cast(tf.argmax(label, axis=1), tf.int32)
        wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))

        wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
        return loss 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:22,代碼來源:imagenet_utils.py

示例5: init

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def init(self, data: Tensor) -> None:
        tau = self.__tauInit
        dtype = self.__dtype
        properties = self.__properties
        noiseDistribution = CenNormal(tau=tf.constant([tau], dtype=dtype),
                                      properties=properties)
        self.__noiseDistribution = noiseDistribution
        observedMask = tf.logical_not(tf.is_nan(data))
        trainMask = tf.logical_not(self.cv.mask(X=data))
        trainMask = tf.get_variable("trainMask",
                                    dtype=trainMask.dtype,
                                    initializer=trainMask)
        trainMask = tf.logical_and(trainMask, observedMask)
        testMask = tf.logical_and(observedMask,
                                  tf.logical_not(trainMask))
        self.__observedMask = observedMask
        self.__trainMask = trainMask
        self.__testMask = testMask 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:20,代碼來源:cvNormalNdLikelihood.py

示例6: updateK

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def updateK(self, k, prepVars, U):
        f = self.__f
        UfShape = U[f].get_shape()

        lhUfk = self.__likelihood.lhUfk(U[f], prepVars, f, k)
        postfk = lhUfk*self.prior[k].cond()
        Ufk = postfk.draw()
        Ufk = tf.expand_dims(Ufk, 0)

        normUfk = tf.norm(Ufk)
        notNanNorm = tf.logical_not(tf.is_nan(normUfk))
        finiteNorm = tf.is_finite(normUfk)
        positiveNorm = normUfk > 0.
        isValid = tf.logical_and(notNanNorm,
                                 tf.logical_and(finiteNorm,
                                                positiveNorm))
        Uf = tf.cond(isValid, lambda: self.updateUf(U[f], Ufk, k),
                     lambda: U[f])

        # TODO: if valid -> self.__likelihood.lhU()[f].updateUfk(U[f][k], k)
        Uf.set_shape(UfShape)
        U[f] = Uf
        return(U) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:25,代碼來源:postU.py

示例7: compute_loss_and_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def compute_loss_and_error(logits, label, label_smoothing=0.):
        if label_smoothing != 0.:
            nclass = logits.shape[-1]
            label = tf.one_hot(label, nclass) if label.shape.ndims == 1 else label

        if label.shape.ndims == 1:
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        else:
            loss = tf.losses.softmax_cross_entropy(
                label, logits, label_smoothing=label_smoothing,
                reduction=tf.losses.Reduction.NONE)
        loss = tf.reduce_mean(loss, name='xentropy-loss')

        def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'):
            with tf.name_scope('prediction_incorrect'):
                x = tf.logical_not(tf.nn.in_top_k(logits, label, topk))
            return tf.cast(x, tf.float32, name=name)

        wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))

        wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
        return loss 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:26,代碼來源:imagenet_utils.py

示例8: filter_groundtruth_with_crowd_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_groundtruth_with_crowd_boxes(tensor_dict):
  """Filters out groundtruth with boxes corresponding to crowd.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
    is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
    is_not_crowd = tf.logical_not(is_crowd)
    is_not_crowd_indices = tf.where(is_not_crowd)
    tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
  return tensor_dict 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:23,代碼來源:ops.py

示例9: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:25,代碼來源:ops.py

示例10: _get_anchor_positive_triplet_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def _get_anchor_positive_triplet_mask(labels):
	"""Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
	Args:
		labels: tf.int32 `Tensor` with shape [batch_size]
	Returns:
		mask: tf.bool `Tensor` with shape [batch_size, batch_size]
	"""
	# Check that i and j are distinct
	indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
	indices_not_equal = tf.logical_not(indices_equal)

	# Check if labels[i] == labels[j]
	# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
	labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))

	# Combine the two masks
	mask = tf.logical_and(indices_not_equal, labels_equal)

	return mask 
開發者ID:yyht,項目名稱:BERT,代碼行數:21,代碼來源:triplet_loss_utils.py

示例11: lengths_to_area_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def lengths_to_area_mask(feature_length, length, max_area_size):
  """Generates a non-padding mask for areas based on lengths.

  Args:
    feature_length: a tensor of [batch_size]
    length: the length of the batch
    max_area_size: the maximum area size considered
  Returns:
    mask: a tensor in shape of [batch_size, num_areas]
  """

  paddings = tf.cast(tf.expand_dims(
      tf.logical_not(
          tf.sequence_mask(feature_length, maxlen=length)), 2), tf.float32)
  _, _, area_sum, _, _ = compute_area_features(paddings,
                                               max_area_width=max_area_size)
  mask = tf.squeeze(tf.logical_not(tf.cast(area_sum, tf.bool)), [2])
  return mask 
開發者ID:yyht,項目名稱:BERT,代碼行數:20,代碼來源:area_attention.py

示例12: compute_loss_and_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def compute_loss_and_error(logits, label):
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        loss = tf.reduce_mean(loss, name='xentropy-loss')

        def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'):
            with tf.name_scope('prediction_incorrect'):
                x = tf.logical_not(tf.nn.in_top_k(logits, label, topk))
            return tf.cast(x, tf.float32, name=name)

        res_scores, res_top5 = tf.nn.top_k(logits, k=5)
        res_scores=tf.identity(logits, name="logits")
        res_top = tf.identity(res_top5, name="res-top5")
        wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))

        wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
        add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
        return loss 
開發者ID:qinenergy,項目名稱:webvision-2.0-benchmarks,代碼行數:20,代碼來源:imagenet_utils.py

示例13: tp_tn_fp_fn_for_each

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def tp_tn_fp_fn_for_each(output, labels, threshold=0.5):
    """Calculate True Positive, True Negative, False Positive, False Negative.

    Args:
        output: network output sigmoided tensor. shape is [batch_size, num_class]
        labels: multi label encoded bool tensor. shape is [batch_size, num_class]
        threshold: python float

    Returns:
        shape is [4(tp, tn, fp, fn), num_class]

    """
    predicted = tf.greater_equal(output, threshold)
    gt_positive = tf.reduce_sum(tf.cast(labels, tf.int32), axis=0, keepdims=True)
    gt_negative = tf.reduce_sum(tf.cast(tf.logical_not(labels), tf.int32), axis=0, keepdims=True)
    true_positive = tf.math.logical_and(predicted, labels)
    true_positive = tf.reduce_sum(tf.cast(true_positive, tf.int32), axis=0, keepdims=True)

    true_negative = tf.math.logical_and(tf.logical_not(predicted), tf.math.logical_not(labels))
    true_negative = tf.reduce_sum(tf.cast(true_negative, tf.int32), axis=0, keepdims=True)
    false_negative = gt_positive - true_positive
    false_positive = gt_negative - true_negative

    return tf.concat(axis=0, values=[true_positive, true_negative, false_positive, false_negative]) 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:26,代碼來源:metrics.py

示例14: tp_tn_fp_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def tp_tn_fp_fn(output, labels, threshold=0.5):
    """Calculate True Positive, True Negative, False Positive, False Negative.

    Args:
        output: network output sigmoided tensor. shape is [batch_size, num_class]
        labels: multi label encoded bool tensor. shape is [batch_size, num_class]
        threshold: python float

    """
    predicted = tf.greater_equal(output, threshold)

    gt_positive = tf.reduce_sum(tf.cast(labels, tf.int32))
    gt_negative = tf.reduce_sum(tf.cast(tf.logical_not(labels), tf.int32))

    true_positive = tf.math.logical_and(predicted, labels)
    true_positive = tf.reduce_sum(tf.cast(true_positive, tf.int32))

    true_negative = tf.math.logical_and(tf.logical_not(predicted), tf.math.logical_not(labels))
    true_negative = tf.reduce_sum(tf.cast(true_negative, tf.int32))

    false_negative = gt_positive - true_positive

    false_positive = gt_negative - true_negative

    return true_positive, true_negative, false_positive, false_negative 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:27,代碼來源:metrics.py

示例15: filter_infinity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import logical_not [as 別名]
def filter_infinity(self, sample):
        """ Filter infinity sample. """
        return tf.logical_not(
            tf.math.is_inf(
                sample[self._min_spectrogram_key])) 
開發者ID:deezer,項目名稱:spleeter,代碼行數:7,代碼來源:dataset.py


注:本文中的tensorflow.logical_not方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。