當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.log_sigmoid方法代碼示例

本文整理匯總了Python中tensorflow.log_sigmoid方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.log_sigmoid方法的具體用法?Python tensorflow.log_sigmoid怎麽用?Python tensorflow.log_sigmoid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.log_sigmoid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: M_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def M_step(log_R, log_activation, vote, lambda_val=0.01):
    R_shape = tf.shape(log_R)
    log_R = log_R + log_activation

    R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
    log_normalized_R = log_R - tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)

    pose = cl.reduce_sum(vote * tf.exp(log_normalized_R), axis=-3, keepdims=True)
    log_var = tf.reduce_logsumexp(log_normalized_R + cl.log(tf.square(vote - pose)), axis=-3, keepdims=True)

    beta_v = tf.get_variable('beta_v',
                             shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
                             initializer=tf.truncated_normal_initializer(mean=15., stddev=3.))
    cost = R_sum_i * (beta_v + 0.5 * log_var)

    beta_a = tf.get_variable('beta_a',
                             shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
                             initializer=tf.truncated_normal_initializer(mean=100.0, stddev=10))
    cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
    logit = lambda_val * (beta_a - cost_sum_h)
    log_activation = tf.log_sigmoid(logit)

    return(pose, log_var, log_activation) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:25,代碼來源:routing.py

示例2: build_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def build_graph(self):
        phs, inps = networks.build_inputs(
            self._observation_space, self._action_space, scale=self._scale
        )
        self._obs_ph, self._act_ph, self._next_obs_ph, self._done_ph = phs
        self.obs_input, self.act_input, _, self.done_input = inps

        with tf.variable_scope("discrim_network"):
            self._disc_logits_gen_is_high, self._disc_mlp = self._build_discrim_net(
                [self.obs_input, self.act_input], **self._build_discrim_net_kwargs
            )
        self._policy_test_reward = self._policy_train_reward = -tf.log_sigmoid(
            self._disc_logits_gen_is_high
        )

        self._disc_loss = tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self._disc_logits_gen_is_high,
            labels=tf.cast(self.labels_gen_is_one_ph, tf.float32),
        ) 
開發者ID:HumanCompatibleAI,項目名稱:imitation,代碼行數:21,代碼來源:discrim_net.py

示例3: gan_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def gan_loss(x, gz, discriminator):
  """Original GAN loss.

  Args:
    x: Batch of real samples.
    gz: Batch of generated samples.
    discriminator: Discriminator function.
  Returns:
    d_loss: Discriminator loss.
    g_loss: Generator loss.
  """
  dx = discriminator(x)
  with tf.variable_scope(tf.get_variable_scope(), reuse=True):
    dgz = discriminator(gz)
  d_loss = -tf.reduce_mean(tf.log_sigmoid(dx) + tf.log_sigmoid(1 - dgz))
  g_loss = -tf.reduce_mean(tf.log_sigmoid(dgz))
  return d_loss, g_loss 
開發者ID:vahidk,項目名稱:TensorflowFramework,代碼行數:19,代碼來源:loss_ops.py

示例4: discriminator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def discriminator(encodings,
                  sequence_lengths,
                  lang_ids,
                  num_layers=3,
                  hidden_size=1024,
                  dropout=0.3):
  """Discriminates the encoder outputs against lang_ids.

  Args:
    encodings: The encoder outputs of shape [batch_size, max_time, hidden_size].
    sequence_lengths: The length of each sequence of shape [batch_size].
    lang_ids: The true lang id of each sequence of shape [batch_size].
    num_layers: The number of layers of the discriminator.
    hidden_size: The hidden size of the discriminator.
    dropout: The dropout to apply on each discriminator layer output.

  Returns:
    A tuple with: the discriminator loss (L_d) and the adversarial loss (L_adv).
  """
  x = encodings
  for _ in range(num_layers):
    x = tf.nn.dropout(x, 1.0 - dropout)
    x = tf.layers.dense(x, hidden_size, activation=tf.nn.leaky_relu)
  x = tf.nn.dropout(x, 1.0 - dropout)
  y = tf.layers.dense(x, 1)

  mask = tf.sequence_mask(
      sequence_lengths, maxlen=tf.shape(encodings)[1], dtype=tf.float32)
  mask = tf.expand_dims(mask, -1)

  y = tf.log_sigmoid(y) * mask
  y = tf.reduce_sum(y, axis=1)
  y = tf.exp(y)

  l_d = binary_cross_entropy(y, lang_ids, smoothing=0.1)
  l_adv = binary_cross_entropy(y, 1 - lang_ids)

  return l_d, l_adv 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:40,代碼來源:train.py

示例5: _apply

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def _apply(self, scores_pos, scores_neg):
        """Apply the loss function.

       Parameters
       ----------
       scores_pos : tf.Tensor, shape [n, 1]
           A tensor of scores assigned to positive statements.
       scores_neg : tf.Tensor, shape [n*negative_count, 1]
           A tensor of scores assigned to negative statements.

       Returns
       -------
       loss : tf.Tensor
           The loss value that must be minimized.

       """
        margin = tf.constant(self._loss_parameters['margin'], dtype=tf.float32, name='margin')
        alpha = tf.constant(self._loss_parameters['alpha'], dtype=tf.float32, name='alpha')

        # Compute p(neg_samples) based on eq 4
        scores_neg_reshaped = tf.reshape(scores_neg, [self._loss_parameters['eta'], tf.shape(scores_pos)[0]])
        p_neg = tf.nn.softmax(alpha * scores_neg_reshaped, axis=0)

        # Compute Loss based on eg 5
        loss = tf.reduce_sum(-tf.log_sigmoid(margin - tf.negative(scores_pos))) - tf.reduce_sum(
            tf.multiply(p_neg, tf.log_sigmoid(tf.negative(scores_neg_reshaped) - margin)))

        return loss 
開發者ID:Accenture,項目名稱:AmpliGraph,代碼行數:30,代碼來源:loss_functions.py

示例6: log_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def log_prob(self, param_batch, sample_vecs):
        sample_vecs = tf.cast(sample_vecs, param_batch.dtype)
        log_probs_on = tf.log_sigmoid(param_batch) * sample_vecs
        log_probs_off = tf.log_sigmoid(-param_batch) * (1-sample_vecs)
        return tf.reduce_sum(log_probs_on + log_probs_off, axis=-1) 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:7,代碼來源:binary.py

示例7: entropy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def entropy(self, param_batch):
        ent_on = tf.log_sigmoid(param_batch) * tf.sigmoid(param_batch)
        ent_off = tf.log_sigmoid(-param_batch) * tf.sigmoid(-param_batch)
        return tf.negative(tf.reduce_sum(ent_on + ent_off, axis=-1)) 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:6,代碼來源:binary.py

示例8: kl_divergence

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def kl_divergence(self, param_batch_1, param_batch_2):
        probs_on = tf.sigmoid(param_batch_1)
        probs_off = tf.sigmoid(-param_batch_1)
        log_diff_on = tf.log_sigmoid(param_batch_1) - tf.log_sigmoid(param_batch_2)
        log_diff_off = tf.log_sigmoid(-param_batch_1) - tf.log_sigmoid(-param_batch_2)
        kls = probs_on*log_diff_on + probs_off*log_diff_off
        return tf.reduce_sum(kls, axis=-1) 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:9,代碼來源:binary.py

示例9: forward_propagation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def forward_propagation(self):
        with tf.variable_scope('gem_embedding'):
            h = tf.get_variable(name='init_embedding', shape=[self.nodes, self.encoding],
                                initializer=tf.contrib.layers.xavier_initializer())
            for i in range(0, self.hop):
                f = GEMLayer(self.placeholders, self.nodes, self.meta, self.embedding, self.encoding)
                gem_out = f(inputs=h)
                h = tf.reshape(gem_out, [self.nodes, self.encoding])
            print('GEM embedding over!')

        with tf.variable_scope('classification'):
            batch_data = tf.matmul(tf.one_hot(self.placeholders['batch_index'], self.nodes), h)
            W = tf.get_variable(name='weights',
                                shape=[self.encoding, self.class_size],
                                initializer=tf.contrib.layers.xavier_initializer())
            b = tf.get_variable(name='bias', shape=[1, self.class_size], initializer=tf.zeros_initializer())
            tf.transpose(batch_data, perm=[0, 1])
            logits = tf.matmul(batch_data, W) + b

            u = tf.get_variable(name='u',
                                shape=[1, self.encoding],
                                initializer=tf.contrib.layers.xavier_initializer())

            loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=self.placeholders['t'], logits=logits)

            # TODO
            # loss = -tf.reduce_sum(
            #     tf.log_sigmoid(self.placeholders['t'] * tf.matmul(u, tf.transpose(batch_data, perm=[1, 0]))))

        # return loss, logits
        return loss, tf.nn.sigmoid(logits) 
開發者ID:safe-graph,項目名稱:DGFraud,代碼行數:33,代碼來源:GEM.py

示例10: logistic_logcdf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def logistic_logcdf(*, x, mean, logscale):
    """
    log cdf of logistic distribution
    this operates elementwise
    """
    z = (x - mean) * tf.exp(-logscale)
    return tf.log_sigmoid(z) 
開發者ID:aravindsrinivas,項目名稱:flowpp,代碼行數:9,代碼來源:logistic.py

示例11: distributed_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def distributed_classifier(config, pooled_output, 
						num_labels, labels,
						dropout_prob,
						ratio_weight=None):

	output_layer = pooled_output

	hidden_size = output_layer.shape[-1].value

	output_weights = tf.get_variable(
			"output_weights", [num_labels, hidden_size],
			initializer=tf.truncated_normal_initializer(stddev=0.02))

	output_bias = tf.get_variable(
			"output_bias", [num_labels], initializer=tf.zeros_initializer())

	output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)

	logits = tf.matmul(output_layer, output_weights, transpose_b=True)
	logits = tf.nn.bias_add(logits, output_bias)

	if config.get("label_type", "single_label") == "single_label":
		if config.get("loss", "entropy") == "entropy":
			# per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
			# 									logits=logits, 
			# 									labels=tf.stop_gradient(labels))

			one_hot_labels = tf.one_hot(labels, num_labels)
			per_example_loss = tf.nn.softmax_cross_entropy_with_logits(
								logits=logits,
								labels=tf.stop_gradient(one_hot_labels),
								)
			
		elif config.get("loss", "entropy") == "focal_loss":
			per_example_loss = loss_utils.focal_loss_multi_v1(config,
														logits=logits, 
														labels=labels)
		loss = tf.reduce_mean(per_example_loss)

		return (loss, per_example_loss, logits)
	elif config.get("label_type", "single_label") == "multi_label":
		# logits = tf.log_sigmoid(logits)
		per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
												logits=logits, 
												labels=tf.stop_gradient(labels))
		per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
		loss = tf.reduce_mean(per_example_loss)
		return (loss, per_example_loss, logits)
	else:
		raise NotImplementedError() 
開發者ID:yyht,項目名稱:BERT,代碼行數:52,代碼來源:classifier.py

示例12: siamese_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def siamese_classifier(config, pooled_output, num_labels,
						labels, dropout_prob,
						ratio_weight=None):

	if config.get("output_layer", "interaction") == "interaction":
		print("==apply interaction layer==")
		repres_a = pooled_output[0]
		repres_b = pooled_output[1]

		output_layer = tf.concat([repres_a, repres_b, tf.abs(repres_a-repres_b), repres_a*repres_b], axis=-1)
		hidden_size = output_layer.shape[-1].value

		output_weights = tf.get_variable(
			"output_weights", [num_labels, hidden_size],
			initializer=tf.truncated_normal_initializer(stddev=0.02))

		output_bias = tf.get_variable(
			"output_bias", [num_labels], initializer=tf.zeros_initializer())

		output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)

		logits = tf.matmul(output_layer, output_weights, transpose_b=True)
		logits = tf.nn.bias_add(logits, output_bias)

		print("==logits shape==", logits.get_shape())

		if config.get("label_type", "single_label") == "single_label":
			if config.get("loss", "entropy") == "entropy":
				# per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
				# 									logits=logits, 
				# 									labels=tf.stop_gradient(labels))

				one_hot_labels = tf.one_hot(labels, num_labels)
				per_example_loss = tf.nn.softmax_cross_entropy_with_logits(
								logits=logits,
								labels=tf.stop_gradient(one_hot_labels),
								)

			elif config.get("loss", "entropy") == "focal_loss":
				per_example_loss, _ = loss_utils.focal_loss_multi_v1(config,
															logits=logits, 
															labels=labels)
			print("==per_example_loss shape==", per_example_loss.get_shape())
			loss = tf.reduce_mean(per_example_loss)

			return (loss, per_example_loss, logits)
		elif config.get("label_type", "single_label") == "multi_label":
			# logits = tf.log_sigmoid(logits)
			per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
													logits=logits, 
													labels=tf.stop_gradient(labels))
			per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
			loss = tf.reduce_mean(per_example_loss)
			return (loss, per_example_loss, logits)
		else:
			raise NotImplementedError() 
開發者ID:yyht,項目名稱:BERT,代碼行數:58,代碼來源:classifier.py

示例13: distributed_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def distributed_classifier(config, pooled_output, 
						num_labels, labels,
						dropout_prob,
						ratio_weight=None):

	output_layer = pooled_output

	hidden_size = output_layer.shape[-1].value

	output_weights = tf.get_variable(
			"output_weights", [num_labels, hidden_size],
			initializer=tf.truncated_normal_initializer(stddev=0.02))

	output_bias = tf.get_variable(
			"output_bias", [num_labels], initializer=tf.zeros_initializer())

	output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)

	logits = tf.matmul(output_layer, output_weights, transpose_b=True)
	logits = tf.nn.bias_add(logits, output_bias)

	if config.get("label_type", "single_label") == "single_label":
		if config.get("loss", "entropy") == "entropy":
			per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
												logits=logits, 
												labels=tf.stop_gradient(labels))
		elif config.get("loss", "entropy") == "focal_loss":
			per_example_loss = loss_utils.focal_loss_multi_v1(config,
														logits=logits, 
														labels=labels)
		loss = tf.reduce_mean(per_example_loss)

		return (loss, per_example_loss, logits)
	elif config.get("label_type", "single_label") == "multi_label":
		logits = tf.log_sigmoid(logits)
		per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
												logits=logits, 
												labels=tf.stop_gradient(labels))
		per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
		loss = tf.reduce_mean(per_example_loss)
		return (loss, per_example_loss, logits)
	else:
		raise NotImplementedError() 
開發者ID:yyht,項目名稱:BERT,代碼行數:45,代碼來源:classifier_adapter.py

示例14: siamese_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def siamese_classifier(config, pooled_output, num_labels,
						labels, dropout_prob,
						ratio_weight=None):

	if config.get("output_layer", "interaction") == "interaction":
		print("==apply interaction layer==")
		repres_a = pooled_output[0]
		repres_b = pooled_output[1]

		output_layer = tf.concat([repres_a, repres_b, tf.abs(repres_a-repres_b), repres_a*repres_b], axis=-1)
		hidden_size = output_layer.shape[-1].value

		output_weights = tf.get_variable(
			"output_weights", [num_labels, hidden_size],
			initializer=tf.truncated_normal_initializer(stddev=0.02))

		output_bias = tf.get_variable(
			"output_bias", [num_labels], initializer=tf.zeros_initializer())

		output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)

		logits = tf.matmul(output_layer, output_weights, transpose_b=True)
		logits = tf.nn.bias_add(logits, output_bias)

		print("==logits shape==", logits.get_shape())

		if config.get("label_type", "single_label") == "single_label":
			if config.get("loss", "entropy") == "entropy":
				per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
													logits=logits, 
													labels=tf.stop_gradient(labels))
			elif config.get("loss", "entropy") == "focal_loss":
				per_example_loss, _ = loss_utils.focal_loss_multi_v1(config,
															logits=logits, 
															labels=labels)
			print("==per_example_loss shape==", per_example_loss.get_shape())
			loss = tf.reduce_mean(per_example_loss)

			return (loss, per_example_loss, logits)
		elif config.get("label_type", "single_label") == "multi_label":
			logits = tf.log_sigmoid(logits)
			per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
													logits=logits, 
													labels=tf.stop_gradient(labels))
			per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
			loss = tf.reduce_mean(per_example_loss)
			return (loss, per_example_loss, logits)
		else:
			raise NotImplementedError() 
開發者ID:yyht,項目名稱:BERT,代碼行數:51,代碼來源:classifier_adapter.py

示例15: _keypoints_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log_sigmoid [as 別名]
def _keypoints_loss(self, keypoints, gbbox_yx, gbbox_y, gbbox_x, gbbox_h, gbbox_w,
                        classid, meshgrid_y, meshgrid_x, pshape):
        sigma = self._gaussian_radius(gbbox_h, gbbox_w, 0.7)
        gbbox_y = tf.reshape(gbbox_y, [-1, 1, 1])
        gbbox_x = tf.reshape(gbbox_x, [-1, 1, 1])
        sigma = tf.reshape(sigma, [-1, 1, 1])

        num_g = tf.shape(gbbox_y)[0]
        meshgrid_y = tf.expand_dims(meshgrid_y, 0)
        meshgrid_y = tf.tile(meshgrid_y, [num_g, 1, 1])
        meshgrid_x = tf.expand_dims(meshgrid_x, 0)
        meshgrid_x = tf.tile(meshgrid_x, [num_g, 1, 1])

        keyp_penalty_reduce = tf.exp(-((gbbox_y-meshgrid_y)**2 + (gbbox_x-meshgrid_x)**2)/(2*sigma**2))
        zero_like_keyp = tf.expand_dims(tf.zeros(pshape, dtype=tf.float32), axis=-1)
        reduction = []
        gt_keypoints = []
        for i in range(self.num_classes):
            exist_i = tf.equal(classid, i)
            reduce_i = tf.boolean_mask(keyp_penalty_reduce, exist_i, axis=0)
            reduce_i = tf.cond(
                tf.equal(tf.shape(reduce_i)[0], 0),
                lambda: zero_like_keyp,
                lambda: tf.expand_dims(tf.reduce_max(reduce_i, axis=0), axis=-1)
            )
            reduction.append(reduce_i)

            gbbox_yx_i = tf.boolean_mask(gbbox_yx, exist_i)
            gt_keypoints_i = tf.cond(
                tf.equal(tf.shape(gbbox_yx_i)[0], 0),
                lambda: zero_like_keyp,
                lambda: tf.expand_dims(tf.sparse.to_dense(tf.sparse.SparseTensor(gbbox_yx_i, tf.ones_like(gbbox_yx_i[..., 0], tf.float32), dense_shape=pshape), validate_indices=False),
                                       axis=-1)
            )
            gt_keypoints.append(gt_keypoints_i)
        reduction = tf.concat(reduction, axis=-1)
        gt_keypoints = tf.concat(gt_keypoints, axis=-1)
        keypoints_pos_loss = -tf.pow(1.-tf.sigmoid(keypoints), 2.) * tf.log_sigmoid(keypoints) * gt_keypoints
        keypoints_neg_loss = -tf.pow(1.-reduction, 4) * tf.pow(tf.sigmoid(keypoints), 2.) * (-keypoints+tf.log_sigmoid(keypoints)) * (1.-gt_keypoints)
        keypoints_loss = tf.reduce_sum(keypoints_pos_loss) / tf.cast(num_g, tf.float32) + tf.reduce_sum(keypoints_neg_loss) / tf.cast(num_g, tf.float32)
        return keypoints_loss

    # from cornernet 
開發者ID:Stick-To,項目名稱:CenterNet-tensorflow,代碼行數:45,代碼來源:CenterNet.py


注:本文中的tensorflow.log_sigmoid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。