本文整理匯總了Python中tensorflow.log1p方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.log1p方法的具體用法?Python tensorflow.log1p怎麽用?Python tensorflow.log1p使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.log1p方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def input_fn(partition, training, batch_size):
"""Generate an input function for the Estimator."""
def _input_fn():
if partition == "train":
dataset = tf.data.Dataset.from_tensor_slices(({
FEATURES_KEY: tf.log1p(x_train)
}, tf.log1p(y_train)))
else:
dataset = tf.data.Dataset.from_tensor_slices(({
FEATURES_KEY: tf.log1p(x_test)
}, tf.log1p(y_test)))
if training:
dataset = dataset.shuffle(10 * batch_size, seed=RANDOM_SEED).repeat()
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
return _input_fn
示例2: _sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def _sample(self, n_samples):
# samples must be sampled from (-1, 1) rather than [-1, 1)
loc, scale = self.loc, self.scale
if not self.is_reparameterized:
loc = tf.stop_gradient(loc)
scale = tf.stop_gradient(scale)
shape = tf.concat([[n_samples], self.batch_shape], 0)
uniform_samples = tf.random_uniform(
shape=shape,
minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
self.dtype.as_numpy_dtype(0.)),
maxval=1.,
dtype=self.dtype)
samples = loc - scale * tf.sign(uniform_samples) * \
tf.log1p(-tf.abs(uniform_samples))
static_n_samples = n_samples if isinstance(n_samples, int) else None
samples.set_shape(
tf.TensorShape([static_n_samples]).concatenate(
self.get_batch_shape()))
return samples
示例3: calculate_latent_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def calculate_latent_loss(self, latent_weights):
""" Calculate the latent loss in the form of KL divergence """
for posterior in self.posteriors:
# Minimize the chi squared divergence of the posterior 'f' from the prior 'g' (a
# standard normal distribution), this amounts to minimizing the square of the difference
# of the first moment of f from the first moment of g divided by the squared variance of
# g (NOTE: mt_f is the t-th moment of the distribution f):
# min(chisq) = (m1_f - m1_g)^2 / sigma_g^2
#
# The idea behind using the chi squared divergence is that it is an upper bound for the
# Kullback-Leibler divergence. The following inequality holds:
# KL(f||g) <= log(1 + Chi^2(f||g))
#
# So minimize this bound rather than the chi squared divergence directly
mean, _ = self.compute_moments(posterior)
axes = tf.range(1, tf.rank(mean))
chisq = tf.log1p(tf.square(mean - self.prior.mean()) / self.prior.variance())
chisq = tf.reduce_sum(latent_weights * chisq, axes)
tf.losses.add_loss(tf.reduce_mean(chisq, name='chisq'))
示例4: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def __call__(self, x):
"""Computes regularization given an ed.Normal random variable as input."""
if not isinstance(x, ed.RandomVariable):
raise ValueError('Input must be an ed.RandomVariable (for correct math, '
'an ed.Normal random variable).')
# Clip magnitude of dropout rate, where we get the dropout rate alpha from
# the additive parameterization (Molchanov et al., 2017): for weight ~
# Normal(mu, sigma**2), the variance `sigma**2 = alpha * mu**2`.
mean = x.distribution.mean()
log_variance = tf.log(x.distribution.variance())
log_alpha = log_variance - tf.log(tf.square(mean) +
tf.keras.backend.epsilon())
log_alpha = tf.clip_by_value(log_alpha, -8., 8.)
# Set magic numbers for cubic polynomial approx. (Molchanov et al., 2017).
k1 = 0.63576
k2 = 1.8732
k3 = 1.48695
c = -k1
output = tf.reduce_sum(k1 * tf.nn.sigmoid(k2 + k3 * log_alpha) +
-0.5 * tf.log1p(tf.exp(-log_alpha)) + c)
return output
示例5: bottleneck
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def bottleneck(self, x): # pylint: disable=arguments-differ
hparams = self.hparams
if hparams.unordered:
return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
noise = hparams.bottleneck_noise
hparams.bottleneck_noise = 0.0 # We'll add noise below.
x, loss = discretization.parametrized_bottleneck(x, hparams)
hparams.bottleneck_noise = noise
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
# We want a number p such that p^bottleneck_bits = 1 - noise.
# So log(p) * bottleneck_bits = log(noise)
log_p = tf.log1p(-float(noise) / 2) / float(hparams.bottleneck_bits)
# Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
# Having the no-noise mask, we can make noise just uniformly at random.
ordered_noise = tf.random_uniform(tf.shape(x))
# We want our noise to be 1s at the start and random {-1, 1} bits later.
ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
# Now we flip the bits of x on the noisy positions (ordered and normal).
x *= 2.0 * ordered_noise - 1
return x, loss
示例6: test_forward_unary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def test_forward_unary():
def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
"""test unary operators"""
np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
out = op(in_data)
compare_tf_with_tvm([np_data], ['in_data:0'], out.name)
_test_forward_unary(tf.acos, -1, 1)
_test_forward_unary(tf.asin, -1, 1)
_test_forward_unary(tf.atanh, -1, 1)
_test_forward_unary(tf.sinh)
_test_forward_unary(tf.cosh)
_test_forward_unary(tf.acosh)
_test_forward_unary(tf.asinh)
_test_forward_unary(tf.atan)
_test_forward_unary(tf.sin)
_test_forward_unary(tf.cos)
_test_forward_unary(tf.tan)
_test_forward_unary(tf.tanh)
_test_forward_unary(tf.erf)
_test_forward_unary(tf.log)
_test_forward_unary(tf.log1p)
示例7: mu_law_encode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def mu_law_encode(audio, quantization_channels):
'''Quantizes waveform amplitudes.'''
with tf.name_scope('encode'):
mu = tf.to_float(quantization_channels - 1)
# Perform mu-law companding transformation (ITU-T, 1988).
# Minimum operation is here to deal with rare large amplitudes caused
# by resampling.
safe_audio_abs = tf.minimum(tf.abs(audio), 1.0)
magnitude = tf.log1p(mu * safe_audio_abs) / tf.log1p(mu)
signal = tf.sign(audio) * magnitude
# Quantize signal to the specified number of levels.
return tf.to_int32((signal + 1) / 2 * mu + 0.5)
示例8: geo_mean
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def geo_mean(sname, true, model):
with tf.name_scope(sname):
waveform_loss = tf.exp(tf.reduce_mean(tf.log1p(
tf.abs(tf.subtract(true, model)))))
tf.summary.scalar(sname, waveform_loss)
return waveform_loss
示例9: pt_dense
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def pt_dense(input_tensor, num_inputs, num_outputs, name, stochastic=True, with_bias=True, reuse=False):
with tf.variable_scope(name) as scope:
W = tf.get_variable('W', [num_inputs, num_outputs], initializer=tf.truncated_normal_initializer(1e-2),
dtype=tf.float32, trainable=True)
log_alpha = tf.get_variable('log_alpha', [], initializer=tf.constant_initializer(-10.0), dtype=tf.float32,
trainable=True)
log_alpha = tf.clip_by_value(log_alpha, -20.0, 20.0)
if not reuse:
# computing reg
k1, k2, k3 = 0.63576, 1.8732, 1.48695
C = -k1
mdkl = k1 * tf.nn.sigmoid(k2 + k3 * log_alpha) - 0.5 * tf.log1p(tf.exp(-log_alpha)) + C
kl = -tf.reduce_sum(mdkl) * tf.reduce_prod(tf.cast(W.get_shape(), tf.float32))
tf.add_to_collection('kl_loss', kl)
# computing output
mu = tf.matmul(input_tensor, W)
si = tf.sqrt(tf.matmul(input_tensor * input_tensor, tf.exp(log_alpha) * W * W) + 1e-16)
output = mu
if stochastic:
output += tf.random_normal(mu.shape, mean=0, stddev=1) * si
if with_bias:
biases = tf.get_variable('biases', num_outputs, tf.float32, tf.constant_initializer(0.0))
output = tf.nn.bias_add(output, biases)
# summaries
if not reuse:
if with_bias:
error = 0.5*(1.0+tf.erf((-mu-biases)/tf.sqrt(2.0)/si))
else:
error = 0.5*(1.0+tf.erf((-mu)/tf.sqrt(2.0)/si))
tf.summary.scalar('error', tf.reduce_sum(error))
tf.summary.scalar('log_alpha', log_alpha)
tf.add_to_collection('log_alpha', log_alpha)
return output
示例10: pt_conv_2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def pt_conv_2d(input_tensor, filter_shape, input_channels, output_channels, padding, name, stochastic=True,
with_bias=True, reuse=False):
with tf.variable_scope(name) as scope:
kernel = tf.get_variable('kernel', [filter_shape[0], filter_shape[1], input_channels, output_channels],
initializer=tf.contrib.layers.xavier_initializer(seed=322), dtype=tf.float32,
trainable=True)
log_alpha = tf.get_variable('log_alpha', [], initializer=tf.constant_initializer(-10.0), dtype=tf.float32,
trainable=True)
log_alpha = tf.clip_by_value(log_alpha, -20.0, 20.0)
if not reuse:
# computing reg
k1, k2, k3 = 0.63576, 1.8732, 1.48695
C = -k1
mdkl = k1 * tf.nn.sigmoid(k2 + k3 * log_alpha) - 0.5 * tf.log1p(tf.exp(-log_alpha)) + C
kl = -tf.reduce_sum(mdkl) * tf.reduce_prod(tf.cast(kernel.get_shape(), tf.float32))
tf.add_to_collection('kl_loss', kl)
# computing output
conved_mu = tf.nn.conv2d(input_tensor, kernel, [1, 1, 1, 1], padding=padding)
conved_si = tf.sqrt(tf.nn.conv2d(input_tensor * input_tensor,
tf.exp(log_alpha) * kernel * kernel,
[1, 1, 1, 1], padding=padding)+1e-16)
output = conved_mu
if stochastic:
output += tf.random_normal(conved_mu.shape, mean=0, stddev=1) * conved_si
if with_bias:
biases = tf.get_variable('biases', output_channels, tf.float32, tf.constant_initializer(0.0))
output = tf.nn.bias_add(output, biases)
# summaries
if not reuse:
if with_bias:
error = 0.5*(1.0+tf.erf((-conved_mu-biases)/tf.sqrt(2.0)/conved_si))
else:
error = 0.5*(1.0+tf.erf((-conved_mu)/tf.sqrt(2.0)/conved_si))
tf.summary.scalar('error', tf.reduce_sum(error))
tf.summary.scalar('log_alpha', log_alpha)
tf.add_to_collection('log_alpha', log_alpha)
return output
示例11: norm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def norm(magnitude):
'''
Log(1 + magnitude)
:param magnitude:
:return:
'''
return tf.log1p(magnitude)
示例12: norm_with_noise
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def norm_with_noise(magnitude):
'''
Log(1 + magnitude) + Noise
:param magnitude:
:return:
'''
return tf.log1p(magnitude) + tf.random_uniform(magnitude.shape, minval=1e-7, maxval=1e-5)
示例13: get_bounded_class_weight
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def get_bounded_class_weight(labels, weights, ub=None):
if weights is None:
return 1.0
else:
w = tf.gather(weights, labels)
w = w / tf.reduce_min(w)
w = tf.clip_by_value(1.0 + tf.log1p(w),
clip_value_min=1.0,
clip_value_max=ub if ub is not None else tf.cast(tf.shape(weights)[0], tf.float32) / 2.0)
return w
示例14: testFloatBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def testFloatBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
y = (x + .5).astype(np.float32) # no zero
z = (x + 15.5).astype(np.float32) # all positive
k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例15: testFloatEmpty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import log1p [as 別名]
def testFloatEmpty(self):
x = np.empty((2, 0, 5), dtype=np.float32)
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(x, np.sqrt, tf.sqrt)
self._compareBoth(x, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(x, np.log, tf.log)
self._compareBoth(x, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(x, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
# Can't use vectorize below, so just use some arbitrary function
self._compareBoth(x, np.sign, tf.lgamma)
self._compareBoth(x, np.sign, tf.erf)
self._compareBoth(x, np.sign, tf.erfc)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(x, np.arcsin, tf.asin)
self._compareBoth(x, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(x, np.sign, tf.sign)
self._compareBothSparse(x, np.sign, tf.erf)