本文整理匯總了Python中tensorflow.load_op_library方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.load_op_library方法的具體用法?Python tensorflow.load_op_library怎麽用?Python tensorflow.load_op_library使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.load_op_library方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testShuffle
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def testShuffle(self):
shuffle_module = tf.load_op_library('shuffle_op.so')
shuffle = shuffle_module.shuffle
input_tensor = np.arange(12).reshape((3, 4))
desired_shape = np.array([6, -1])
output_tensor = input_tensor.reshape((6, 2))
with self.test_session():
result = shuffle(input_tensor, desired_shape)
self.assertAllEqual(result.eval(), output_tensor)
input_tensor = np.arange(12).reshape((3, 4))
desired_shape = np.array([5, -1])
output_tensor = input_tensor.reshape((6, 2))[:-1]
with self.test_session():
result = shuffle(input_tensor, desired_shape)
self.assertAllEqual(result.eval(), output_tensor)
示例2: _load_library
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def _load_library(filename, lib="op"):
"""_load_library"""
f = inspect.getfile(sys._getframe(1)) # pylint: disable=protected-access
# Construct filename
f = os.path.join(os.path.dirname(f), filename)
filenames = [f]
# Function to load the library, return True if file system library is loaded
load_fn = tf.load_op_library if lib == "op" \
else lambda f: tf.compat.v1.load_file_system_library(f) is None
# Try to load all paths for file, fail if none succeed
errs = []
for f in filenames:
try:
l = load_fn(f)
if l is not None:
return l
except errors.NotFoundError as e:
errs.append(str(e))
raise NotImplementedError(
"unable to open file: " +
"{}, from paths: {}\ncaused by: {}".format(filename, filenames, errs))
示例3: register_custom_kernels
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def register_custom_kernels() -> None:
all_shared_objects = _get_all_shared_objects()
if not all_shared_objects:
raise FileNotFoundError(
"No shared objects files were found in the custom ops "
"directory in Tensorflow Addons, check your installation again,"
"or, if you don't need custom ops, call `tfa.register_all(custom_kernels=False)`"
" instead."
)
try:
for shared_object in all_shared_objects:
tf.load_op_library(shared_object)
except tf.errors.NotFoundError as e:
raise RuntimeError(
"One of the shared objects ({}) could not be loaded. This may be "
"due to a number of reasons (incompatible TensorFlow version, buiding from "
"source with different flags, broken install of TensorFlow Addons...). If you"
"wanted to register the shared objects because you needed them when loading your "
"model, you should fix your install of TensorFlow Addons. If you don't "
"use custom ops in your model, you can skip registering custom ops with "
"`tfa.register_all(custom_kernels=False)`".format(shared_object)
) from e
示例4: _custom_cpp_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def _custom_cpp_op(op: CompilableOp, stateful, name):
""" Compiles and registers a custom C++ Tensorflow operator """
# Compile the .so file
tf_path = os.path.abspath(os.path.dirname(tf.__file__))
so_file = TFCompiler().compile_op(op.name, op.files,
op.inputs, op.outputs,
any([f.endswith('.cu') for f in op.files]), op.live_output,
additional_cmake_options=['-DTENSORFLOW_PATH=' + tf_path] + op.cmake_options,
additional_definitions=op.defs, output_folder=op.output_folder)
# Load the compiled library into Tensorflow
op_module = tf.load_op_library(so_file)
op_func = getattr(op_module, 'tf_op' + op.name)
op_grad_func = getattr(op_module, 'tf_op_grad' + op.name)
# Create the deep500 custom op object
lib = ctypes.CDLL(so_file)
if not getattr(lib, 'create_new_op', False):
raise ValueError('Invalid custom operator library file')
lib.create_new_op.restype = ctypes.c_int64
lib.is_cuda_supported.restype = ctypes.c_bool
lib.report.restype = ctypes.c_int64
return TFCompiledOp(op, op_func, op_grad_func, lib)
示例5: setupCTC
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def setupCTC(self):
""" Create CTC loss and decoder and return them """
# BxTxC -> TxBxC
self.ctcIn3dTBC = tf.transpose(self.rnnOut3d, [1, 0, 2])
# Ground truth text as sparse tensor
with tf.name_scope('CTC_Loss'):
self.gtTexts = tf.SparseTensor(tf.placeholder(tf.int64, shape=[
None, 2]), tf.placeholder(tf.int32, [None]), tf.placeholder(tf.int64, [2]))
# Calculate loss for batch
self.seqLen = tf.placeholder(tf.int32, [None])
self.loss = tf.reduce_mean(tf.nn.ctc_loss(labels=self.gtTexts, inputs=self.ctcIn3dTBC, sequence_length=self.seqLen,
ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=True))
with tf.name_scope('CTC_Decoder'):
# Decoder: Best path decoding or Word beam search decoding
if self.decoderType == DecoderType.BestPath:
self.decoder = tf.nn.ctc_greedy_decoder(
inputs=self.ctcIn3dTBC, sequence_length=self.seqLen)
elif self.decoderType == DecoderType.BeamSearch:
self.decoder = tf.nn.ctc_beam_search_decoder(inputs=self.ctcIn3dTBC, sequence_length=self.seqLen, beam_width=50, merge_repeated=True)
elif self.decoderType == DecoderType.WordBeamSearch:
# Import compiled word beam search operation (see https://github.com/githubharald/CTCWordBeamSearch)
word_beam_search_module = tf.load_op_library(
'./TFWordBeamSearch.so')
# Prepare: dictionary, characters in dataset, characters forming words
chars = codecs.open(FilePaths.wordCharList.txt, 'r').read()
wordChars = codecs.open(
FilePaths.fnWordCharList, 'r').read()
corpus = codecs.open(FilePaths.corpus.txt, 'r').read()
# # Decoder using the "NGramsForecastAndSample": restrict number of (possible) next words to at most 20 words: O(W) mode of word beam search
# decoder = word_beam_search_module.word_beam_search(tf.nn.softmax(ctcIn3dTBC, dim=2), 25, 'NGramsForecastAndSample', 0.0, corpus.encode('utf8'), chars.encode('utf8'), wordChars.encode('utf8'))
# Decoder using the "Words": only use dictionary, no scoring: O(1) mode of word beam search
self.decoder = word_beam_search_module.word_beam_search(tf.nn.softmax(
self.ctcIn3dTBC, dim=2), 25, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'), wordChars.encode('utf8'))
# Return a CTC operation to compute the loss and CTC operation to decode the RNN output
return self.loss, self.decoder
開發者ID:sushant097,項目名稱:Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow,代碼行數:42,代碼來源:Model.py
示例6: ops
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def ops(self):
if SKIP_CUSTOM_OPS:
import pytest
pytest.skip(
"Skipping the test because a custom ops "
"was being loaded while --skip-custom-ops was set."
)
if self._ops is None:
self.display_warning_if_incompatible()
self._ops = tf.load_op_library(get_path_to_datafile(self.relative_path))
return self._ops
示例7: test_get_all_shared_objects
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def test_get_all_shared_objects():
if resource_loader.SKIP_CUSTOM_OPS:
pytest.skip(
"Skipping the test because a custom ops "
"was being loaded while --skip-custom-ops was set."
)
all_shared_objects = _get_all_shared_objects()
assert len(all_shared_objects) >= 4
for file in all_shared_objects:
tf.load_op_library(file)
示例8: f_segm_match
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def f_segm_match(iou, s_gt):
"""Matching between segmentation output and groundtruth.
Args:
y_out: [B, T, H, W], output segmentations
y_gt: [B, T, H, W], groundtruth segmentations
s_gt: [B, T], groudtruth score sequence
"""
global hungarian_module
if hungarian_module is None:
mod_name = './hungarian.so'
hungarian_module = tf.load_op_library(mod_name)
log.info('Loaded library "{}"'.format(mod_name))
# Mask X, [B, M] => [B, 1, M]
mask_x = tf.expand_dims(s_gt, dim=1)
# Mask Y, [B, M] => [B, N, 1]
mask_y = tf.expand_dims(s_gt, dim=2)
iou_mask = iou * mask_x * mask_y
# Keep certain precision so that we can get optimal matching within
# reasonable time.
eps = 1e-5
precision = 1e6
iou_mask = tf.round(iou_mask * precision) / precision
match_eps = hungarian_module.hungarian(iou_mask + eps)[0]
# [1, N, 1, 1]
s_gt_shape = tf.shape(s_gt)
num_segm_out = s_gt_shape[1]
num_segm_out_mul = tf.pack([1, num_segm_out, 1])
# Mask the graph algorithm output.
match = match_eps * mask_x * mask_y
return match
示例9: find_kaldi_io_library
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def find_kaldi_io_library():
"""Check that libtf_kaldi_io.so can be found. If it can, ensure that
Tensorflow's tf.load_op_library() can find it by potentially adding it to
the LD_LIBRARY_PATH as necessary.
If it is not found, raise a helpful and informative error."""
try:
libtf_kaldi_io = resource_filename(__package__, "libtf_kaldi_io.so")
found = os.path.isfile(libtf_kaldi_io)
except ImportError:
# If we can't import tf_kaldi_io, definitely can't get its resources.
found = False
if found:
# If we have a libtf_kaldi_io.so from the tf_kaldi_io Python package,
# then ensure it gets on the path. We stick it on the front of the
# path, because it would be confusing if a tf_kaldi_io package used a
# libtf_kaldi_io.so that didn't correspond to it, just because the user
# happened to have a custom LD_LIBRARY_PATH set.
old_ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
lib_dir = os.path.dirname(libtf_kaldi_io)
os.environ["LD_LIBRARY_PATH"] = lib_dir + ":" + old_ld_library_path
# Ensure that at this point, no matter what, Tensorflow should be able to
# load libtf_kaldi_io.so as an op library.
kaldi_io_lib_paths = find_shared_library("tf_kaldi_io")
if kaldi_io_lib_paths:
return kaldi_io_lib_paths["libtf_kaldi_io.so"]
else:
raise RuntimeError(MISSING_LIBRARY_ERROR)
# Find the path to the KaldiIO shared library.
示例10: testLoadTwice
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def testLoadTwice(self):
zero_out_loaded_again = tf.load_op_library(os.path.join(
tf.resource_loader.get_data_files_path(), 'zero_out_op_kernel_1.so'))
self.assertEqual(zero_out_loaded_again, zero_out_op_1._zero_out_module)
示例11: graph_transform_mpi
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def graph_transform_mpi(single_gpu_meta_graph_def, config,
op_library_path=None):
if op_library_path is not None:
tf.load_op_library(op_library_path)
with tf.Graph().as_default() as replica:
tf.train.import_meta_graph(single_gpu_meta_graph_def)
tensor_or_op_name_to_replica_names = {}
for op in replica.get_operations():
tensor_or_op_name_to_replica_names[op.name] = [op.name]
for output in op.outputs:
tensor_or_op_name_to_replica_names[output.name] = [output.name]
# Initialize horovod
hvd.init()
num_workers = hvd.size()
worker_id = hvd.rank()
update_shard_values_for_worker(num_workers, worker_id)
op_to_control_consumer_ops = get_all_control_consumers(replica)
trainable_variable_ops = [var.op for var in tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES)]
for gradients_info in tf.get_collection(tf.GraphKeys.GRADIENTS_INFO):
target_tensor = gradients_info._target
if target_tensor.op not in trainable_variable_ops:
parallax_log.debug(
"Gradient for non-trainable variable %s is created, ignore"
% target_tensor.op.name)
continue
_add_aggregation_ops(gradients_info, op_to_control_consumer_ops, config)
_add_broadcast_ops()
return tf.train.export_meta_graph(graph=replica), \
tensor_or_op_name_to_replica_names
示例12: testBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def testBasic(self):
library_filename = os.path.join(tf.resource_loader.get_data_files_path(),
'invalid_op.so')
with self.assertRaises(tf.errors.InvalidArgumentError):
tf.load_op_library(library_filename)
示例13: testBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def testBasic(self):
library_filename = os.path.join(tf.resource_loader.get_data_files_path(),
'duplicate_op.so')
duplicate = tf.load_op_library(library_filename)
self.assertEqual(len(duplicate.OP_LIST.op), 0)
with self.test_session():
self.assertEqual(tf.add(1, 41).eval(), 42)
示例14: testBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def testBasic(self):
library_filename = os.path.join(tf.resource_loader.get_data_files_path(),
'ackermann_op.so')
ackermann = tf.load_op_library(library_filename)
self.assertEqual(len(ackermann.OP_LIST.op), 1)
self.assertEqual(ackermann.OP_LIST.op[0].name, 'Ackermann')
with self.test_session():
self.assertEqual(ackermann.ackermann().eval(), b'A(m, 0) == A(m-1, 1)')
示例15: Load
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import load_op_library [as 別名]
def Load():
"""Load the TopN ops library and return the loaded module."""
with _ops_lock:
global _topn_ops
if not _topn_ops:
ops_path = tf.resource_loader.get_path_to_datafile(TOPN_OPS_FILE)
tf.logging.info('data path: %s', ops_path)
_topn_ops = tf.load_op_library(ops_path)
assert _topn_ops, 'Could not load topn_ops.so'
return _topn_ops