當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.lin_space方法代碼示例

本文整理匯總了Python中tensorflow.lin_space方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.lin_space方法的具體用法?Python tensorflow.lin_space怎麽用?Python tensorflow.lin_space使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.lin_space方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _generate_rand

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def _generate_rand(min_factor, max_factor, step_size):
    """Gets a random value.
         Args:
            min_factor: Minimum value.
            max_factor: Maximum value.
            step_size: The step size from minimum to maximum value.
         Returns:
            A random value selected between minimum and maximum value.
         Raises:
            ValueError: min_factor has unexpected value.
    """
    if min_factor < 0 or min_factor > max_factor:
        raise ValueError("Unexpected value of min_factor.")
    if min_factor == max_factor:
        return tf.to_float(min_factor)
        # When step_size = 0, we sample the value uniformly from [min, max).
    if step_size == 0:
        return tf.random_uniform([1],
                                 minval=min_factor,
                                 maxval=max_factor)
        # When step_size != 0, we randomly select one discrete value from [min, max].
    num_steps = int((max_factor - min_factor) / step_size + 1)
    scale_factors = tf.lin_space(min_factor, max_factor, num_steps)
    shuffled_scale_factors = tf.random_shuffle(scale_factors)
    return shuffled_scale_factors[0] 
開發者ID:hyperconnect,項目名稱:MMNet,代碼行數:27,代碼來源:augmentation_factory.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def __init__(self, cfg, schedule=None, is_training=True, reuse=False):
        self.cfg = cfg
        self.reuse = reuse
        self.is_training = is_training
        self.schedule = schedule

        self.summaries = {}
        self.depths = tf.lin_space(cfg.MIN_DEPTH, cfg.MAX_DEPTH, cfg.COST_VOLUME_DEPTH)

        self.batch_norm_params = {
          'decay': .995,
          'epsilon': 1e-5,
          'scale': True,
          'renorm': True,
          'renorm_clipping': schedule,
          'trainable': self.is_training,
          'is_training': self.is_training,
        } 
開發者ID:princeton-vl,項目名稱:DeepV2D,代碼行數:20,代碼來源:depth.py

示例3: rand_warp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def rand_warp(images, out_size, max_warp=0.5, name='rand_hom'):
    num_batch = tf.shape(images)[0]
    y = tf.lin_space(-1., 1., 2)
    x = tf.lin_space(-1., 1., 2)
    py, px = tf.meshgrid(y, x)
    pts_orig = tf.tile(tf.concat([tf.reshape(px, [1, -1, 1]), 
                          tf.reshape(py, [1, -1, 1])],
                          axis=-1), [num_batch, 1, 1])
    x = pts_orig[:,:,0:1]
    y = pts_orig[:,:,1:2]

    rx1 = tf.random.uniform([num_batch, 2, 1], -1., -1.+ max_warp)
    rx2 = tf.random.uniform([num_batch, 2, 1], 1.- max_warp, 1.)
    rx = tf.concat([rx1, rx2], axis=1)
    
    ry1 = tf.random.uniform([num_batch, 2, 1], -1., -1.+max_warp)
    ry2 = tf.random.uniform([num_batch, 2, 1], 1.-max_warp, 1.)
    ry = tf.reshape(tf.concat([ry1, ry2], axis=2), [num_batch, 4, 1])

    pts_warp = tf.concat([rx, ry], axis=2)

    h = estimate_hom(pts_orig, pts_warp)
    return hom_warp(images, out_size, h) 
開發者ID:rpng,項目名稱:calc2.0,代碼行數:25,代碼來源:layers.py

示例4: get_random_scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
    """Gets a random scale value.

    Args:
      min_scale_factor: Minimum scale value.
      max_scale_factor: Maximum scale value.
      step_size: The step size from minimum to maximum value.

    Returns:
      A random scale value selected between minimum and maximum value.

    Raises:
      ValueError: min_scale_factor has unexpected value.
    """
    if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
        raise ValueError('Unexpected value of min_scale_factor.')

    if min_scale_factor == max_scale_factor:
        return tf.cast(min_scale_factor, tf.float32)

    # When step_size = 0, we sample the value uniformly from [min, max).
    if step_size == 0:
        return tf.random_uniform([1],
                                 minval=min_scale_factor,
                                 maxval=max_scale_factor)

    # When step_size != 0, we randomly select one discrete value from [min, max].
    num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
    scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
    shuffled_scale_factors = tf.random_shuffle(scale_factors)
    return shuffled_scale_factors[0] 
開發者ID:sercant,項目名稱:mobile-segmentation,代碼行數:33,代碼來源:preprocess_utils.py

示例5: get_random_scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
  """Gets a random scale value.

  Args:
    min_scale_factor: Minimum scale value.
    max_scale_factor: Maximum scale value.
    step_size: The step size from minimum to maximum value.

  Returns:
    A random scale value selected between minimum and maximum value.

  Raises:
    ValueError: min_scale_factor has unexpected value.
  """
  if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
    raise ValueError('Unexpected value of min_scale_factor.')

  if min_scale_factor == max_scale_factor:
    return tf.to_float(min_scale_factor)

  # When step_size = 0, we sample the value uniformly from [min, max).
  if step_size == 0:
    return tf.random_uniform([1],
                             minval=min_scale_factor,
                             maxval=max_scale_factor)

  # When step_size != 0, we randomly select one discrete value from [min, max].
  num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
  scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
  shuffled_scale_factors = tf.random_shuffle(scale_factors)
  return shuffled_scale_factors[0] 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:33,代碼來源:preprocess_utils.py

示例6: get_random_scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
  """Gets a random scale value.

  Args:
    min_scale_factor: Minimum scale value.
    max_scale_factor: Maximum scale value.
    step_size: The step size from minimum to maximum value.

  Returns:
    A random scale value selected between minimum and maximum value.

  Raises:
    ValueError: min_scale_factor has unexpected value.
  """
  if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
    raise ValueError('Unexpected value of min_scale_factor.')

  if min_scale_factor == max_scale_factor:
    return tf.cast(min_scale_factor, tf.float32)

  # When step_size = 0, we sample the value uniformly from [min, max).
  if step_size == 0:
    return tf.random_uniform([1],
                             minval=min_scale_factor,
                             maxval=max_scale_factor)

  # When step_size != 0, we randomly select one discrete value from [min, max].
  num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
  scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
  shuffled_scale_factors = tf.random_shuffle(scale_factors)
  return shuffled_scale_factors[0] 
開發者ID:IBM,項目名稱:MAX-Image-Segmenter,代碼行數:33,代碼來源:preprocess_utils.py

示例7: stereo_network_cat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def stereo_network_cat(self, Ts, images, intrinsics):
        """3D Matching Network with view concatenation"""

        cfg = self.cfg
        depths = tf.lin_space(cfg.MIN_DEPTH, cfg.MAX_DEPTH, cfg.COST_VOLUME_DEPTH)
        intrinsics = intrinsics_vec_to_matrix(intrinsics / 4.0)

        with tf.variable_scope("stereo", reuse=self.reuse) as sc:
            # extract 2d feature maps from images and build cost volume
            fmaps = self.encoder(images)
            volume = operators.backproject_cat(Ts, depths, intrinsics, fmaps)

            self.spreds = []
            with slim.arg_scope([slim.batch_norm], **self.batch_norm_params):
                with slim.arg_scope([slim.conv3d],
                                    weights_regularizer=slim.l2_regularizer(0.00005),
                                    normalizer_fn=None,
                                    activation_fn=None):


                    x = slim.conv3d(volume, 48, [3, 3, 3])
                    x = tf.add(x, conv3d(conv3d(x, 48), 48))

                    self.pred_logits = []
                    for i in range(self.cfg.HG_COUNT):
                        with tf.variable_scope("hg1_%d"%i):
                            x = hg.hourglass_3d(x, 4, 48)
                            self.pred_logits.append(self.stereo_head(x))

        return self.soft_argmax(self.pred_logits[-1]) 
開發者ID:princeton-vl,項目名稱:DeepV2D,代碼行數:32,代碼來源:depth.py

示例8: get_distibute_q

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_distibute_q(q_values, v_min, v_max, atoms, observations_ph):
    probability = tf.nn.softmax(q_values)
    atoms_range = tf.lin_space(v_min, v_max, atoms)
    atoms_range = tf.expand_dims(atoms_range, 0)  # 1*atoms
    atoms_range = tf.expand_dims(atoms_range, -1)  # 1*atoms*1
    atoms_range = tf.tile(atoms_range, [tf.shape(observations_ph.get())[0], 1, 1])
    q_t1_best = tf.matmul(probability, atoms_range)
    q_t1_best = tf.squeeze(q_t1_best, -1)
    return q_t1_best 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:11,代碼來源:build_graph.py

示例9: get_random_scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
    """Gets a random scale value.

    Args:
      min_scale_factor: Minimum scale value.
      max_scale_factor: Maximum scale value.
      step_size: The step size from minimum to maximum value.

    Returns:
      A random scale value selected between minimum and maximum value.

    Raises:
      ValueError: min_scale_factor has unexpected value.
    """
    if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
        raise ValueError('Unexpected value of min_scale_factor.')

    if min_scale_factor == max_scale_factor:
        return tf.to_float(min_scale_factor)

    # When step_size = 0, we sample the value uniformly from [min, max).
    if step_size == 0:
        return tf.random_uniform([1],
                                 minval=min_scale_factor,
                                 maxval=max_scale_factor)

    # When step_size != 0, we randomly select one discrete value from
    # [min, max].
    num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
    scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
    shuffled_scale_factors = tf.random_shuffle(scale_factors)
    return shuffled_scale_factors[0] 
開發者ID:nolanliou,項目名稱:mobile-deeplab-v3-plus,代碼行數:34,代碼來源:utils.py

示例10: get_random_scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_random_scale(min_scale_factor, max_scale_factor, step_size):
    """Gets a random scale value.

    Args:
      min_scale_factor: Minimum scale value.
      max_scale_factor: Maximum scale value.
      step_size: The step size from minimum to maximum value.

    Returns:
      A random scale value selected between minimum and maximum value.

    Raises:
      ValueError: min_scale_factor has unexpected value.
    """
    if min_scale_factor < 0 or min_scale_factor > max_scale_factor:
        raise ValueError('Unexpected value of min_scale_factor.')

    if min_scale_factor == max_scale_factor:
        return tf.to_float(min_scale_factor)

    # When step_size = 0, we sample the value uniformly from [min, max).
    if step_size == 0:
        return tf.random_uniform([1],
                                 minval=min_scale_factor,
                                 maxval=max_scale_factor)

    # When step_size != 0, we randomly select one discrete value from [min, max].
    num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1)
    scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps)
    shuffled_scale_factors = tf.random_shuffle(scale_factors)
    return shuffled_scale_factors[0] 
開發者ID:POSTECH-IMLAB,項目名稱:LaneSegmentationNetwork,代碼行數:33,代碼來源:preprocessing.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def __init__(self, state, action, state_dims, action_dims, dense1_size, dense2_size, final_layer_init, num_atoms, v_min, v_max, scope='critic'):
        # state - State input to pass through the network
        # action - Action input for which the Z distribution should be predicted
         
        self.state = state
        self.action = action
        self.state_dims = np.prod(state_dims)       #Used to calculate the fan_in of the state layer (e.g. if state_dims is (3,2) fan_in should equal 6)
        self.action_dims = np.prod(action_dims)
        self.scope = scope    
         
        with tf.variable_scope(self.scope):           
            self.dense1_mul = dense(self.state, dense1_size, weight_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(self.state_dims))), 1/tf.sqrt(tf.to_float(self.state_dims))),
                                bias_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(self.state_dims))), 1/tf.sqrt(tf.to_float(self.state_dims))), scope='dense1')  
                         
            self.dense1 = relu(self.dense1_mul, scope='dense1')
             
            #Merge first dense layer with action input to get second dense layer            
            self.dense2a = dense(self.dense1, dense2_size, weight_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), 1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))),
                                bias_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), 1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), scope='dense2a')        
             
            self.dense2b = dense(self.action, dense2_size, weight_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), 1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))),
                                bias_init=tf.random_uniform_initializer((-1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), 1/tf.sqrt(tf.to_float(dense1_size+self.action_dims))), scope='dense2b') 
                           
            self.dense2 = relu(self.dense2a + self.dense2b, scope='dense2')
                          
            self.output_logits = dense(self.dense2, num_atoms, weight_init=tf.random_uniform_initializer(-1*final_layer_init, final_layer_init),
                                       bias_init=tf.random_uniform_initializer(-1*final_layer_init, final_layer_init), scope='output_logits')  
            
            self.output_probs = softmax(self.output_logits, scope='output_probs')
                         
                          
            self.network_params = tf.trainable_variables(scope=self.scope)
            self.bn_params = [] # No batch norm params
            
            
            self.z_atoms = tf.lin_space(v_min, v_max, num_atoms)
            
            self.Q_val = tf.reduce_sum(self.z_atoms * self.output_probs) # the Q value is the mean of the categorical output Z-distribution
          
            self.action_grads = tf.gradients(self.output_probs, self.action, self.z_atoms) # gradient of mean of output Z-distribution wrt action input - used to train actor network, weighing the grads by z_values gives the mean across the output distribution 
開發者ID:msinto93,項目名稱:D4PG,代碼行數:42,代碼來源:network.py

示例12: stereo_network_avg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def stereo_network_avg(self, Ts, images, intrinsics, adj_list=None):
        """3D Matching Network with view pooling
        Ts: collection of pose estimates correponding to images
        images: rgb images
        intrinsics: image intrinsics
        adj_list: [n, m] matrix specifying frames co-visiblee frames
        """

        cfg = self.cfg
        depths = tf.lin_space(cfg.MIN_DEPTH, cfg.MAX_DEPTH, cfg.COST_VOLUME_DEPTH)
        intrinsics = intrinsics_vec_to_matrix(intrinsics / 4.0)

        with tf.variable_scope("stereo", reuse=self.reuse) as sc:
            # extract 2d feature maps from images and build cost volume
            fmaps = self.encoder(images)
            volume = operators.backproject_avg(Ts, depths, intrinsics, fmaps, adj_list)

            self.spreds = []
            with slim.arg_scope([slim.batch_norm], **self.batch_norm_params):
                with slim.arg_scope([slim.conv3d],
                                    weights_regularizer=slim.l2_regularizer(0.00005),
                                    normalizer_fn=None,
                                    activation_fn=None):

                    dim = tf.shape(volume)
                    volume = tf.reshape(volume, [dim[0]*dim[1], dim[2], dim[3], dim[4], 64])

                    x = slim.conv3d(volume, 32, [1, 1, 1])
                    tf.add_to_collection("checkpoints", x)

                    # multi-view convolution
                    x = tf.add(x, conv3d(conv3d(x, 32), 32))

                    x = tf.reshape(x, [dim[0], dim[1], dim[2], dim[3], dim[4], 32])
                    x = tf.reduce_mean(x, axis=1)
                    tf.add_to_collection("checkpoints", x)

                    self.pred_logits = []
                    for i in range(self.cfg.HG_COUNT):
                        with tf.variable_scope("hg1_%d"%i):
                            x = hg.hourglass_3d(x, 4, 32)
                            self.pred_logits.append(self.stereo_head(x))

        return self.soft_argmax(self.pred_logits[-1]) 
開發者ID:princeton-vl,項目名稱:DeepV2D,代碼行數:46,代碼來源:depth.py

示例13: get_homographies_inv_depth

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def get_homographies_inv_depth(left_cam, right_cam, depth_num, depth_start, depth_end):

    with tf.name_scope('get_homographies'):
        # cameras (K, R, t)
        R_left = tf.slice(left_cam, [0, 0, 0, 0], [-1, 1, 3, 3])
        R_right = tf.slice(right_cam, [0, 0, 0, 0], [-1, 1, 3, 3])
        t_left = tf.slice(left_cam, [0, 0, 0, 3], [-1, 1, 3, 1])
        t_right = tf.slice(right_cam, [0, 0, 0, 3], [-1, 1, 3, 1])
        K_left = tf.slice(left_cam, [0, 1, 0, 0], [-1, 1, 3, 3])
        K_right = tf.slice(right_cam, [0, 1, 0, 0], [-1, 1, 3, 3])

        # depth 
        depth_num = tf.reshape(tf.cast(depth_num, 'int32'), [])

        inv_depth_start = tf.reshape(tf.div(1.0, depth_start), [])
        inv_depth_end = tf.reshape(tf.div(1.0, depth_end), [])
        inv_depth = tf.lin_space(inv_depth_start, inv_depth_end, depth_num)
        depth = tf.div(1.0, inv_depth)

        # preparation
        num_depth = tf.shape(depth)[0]
        K_left_inv = tf.matrix_inverse(tf.squeeze(K_left, axis=1))
        R_left_trans = tf.transpose(tf.squeeze(R_left, axis=1), perm=[0, 2, 1])
        R_right_trans = tf.transpose(tf.squeeze(R_right, axis=1), perm=[0, 2, 1])

        fronto_direction = tf.slice(tf.squeeze(R_left, axis=1), [0, 2, 0], [-1, 1, 3])          # (B, D, 1, 3)

        c_left = -tf.matmul(R_left_trans, tf.squeeze(t_left, axis=1))
        c_right = -tf.matmul(R_right_trans, tf.squeeze(t_right, axis=1))                        # (B, D, 3, 1)
        c_relative = tf.subtract(c_right, c_left)        

        # compute
        batch_size = tf.shape(R_left)[0]
        temp_vec = tf.matmul(c_relative, fronto_direction)
        depth_mat = tf.tile(tf.reshape(depth, [batch_size, num_depth, 1, 1]), [1, 1, 3, 3])

        temp_vec = tf.tile(tf.expand_dims(temp_vec, axis=1), [1, num_depth, 1, 1])

        middle_mat0 = tf.eye(3, batch_shape=[batch_size, num_depth]) - temp_vec / depth_mat
        middle_mat1 = tf.tile(tf.expand_dims(tf.matmul(R_left_trans, K_left_inv), axis=1), [1, num_depth, 1, 1])
        middle_mat2 = tf.matmul(middle_mat0, middle_mat1)

        homographies = tf.matmul(tf.tile(K_right, [1, num_depth, 1, 1])
                     , tf.matmul(tf.tile(R_right, [1, num_depth, 1, 1])
                     , middle_mat2))

    return homographies 
開發者ID:YoYo000,項目名稱:MVSNet,代碼行數:49,代碼來源:homography_warping.py

示例14: _buckets

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import lin_space [as 別名]
def _buckets(data, bucket_count=None):
  """Create a TensorFlow op to group data into histogram buckets.

  Arguments:
    data: A `Tensor` of any shape. Must be castable to `float64`.
    bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
  Returns:
    A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
    a triple `[left_edge, right_edge, count]` for a single bucket.
    The value of `k` is either `bucket_count` or `1` or `0`.
  """
  if bucket_count is None:
    bucket_count = DEFAULT_BUCKET_COUNT
  with tf.name_scope('buckets', values=[data, bucket_count]), \
       tf.control_dependencies([tf.assert_scalar(bucket_count),
                                tf.assert_type(bucket_count, tf.int32)]):
    data = tf.reshape(data, shape=[-1])  # flatten
    data = tf.cast(data, tf.float64)
    is_empty = tf.equal(tf.size(data), 0)

    def when_empty():
      return tf.constant([], shape=(0, 3), dtype=tf.float64)

    def when_nonempty():
      min_ = tf.reduce_min(data)
      max_ = tf.reduce_max(data)
      range_ = max_ - min_
      is_singular = tf.equal(range_, 0)

      def when_nonsingular():
        bucket_width = range_ / tf.cast(bucket_count, tf.float64)
        offsets = data - min_
        bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
                                 dtype=tf.int32)
        clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
        one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
        bucket_counts = tf.cast(tf.reduce_sum(one_hots, axis=0),
                                dtype=tf.float64)
        edges = tf.lin_space(min_, max_, bucket_count + 1)
        left_edges = edges[:-1]
        right_edges = edges[1:]
        return tf.transpose(tf.stack(
            [left_edges, right_edges, bucket_counts]))

      def when_singular():
        center = min_
        bucket_starts = tf.stack([center - 0.5])
        bucket_ends = tf.stack([center + 0.5])
        bucket_counts = tf.stack([tf.cast(tf.size(data), tf.float64)])
        return tf.transpose(
            tf.stack([bucket_starts, bucket_ends, bucket_counts]))

      return tf.cond(is_singular, when_singular, when_nonsingular)

    return tf.cond(is_empty, when_empty, when_nonempty) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:57,代碼來源:summary.py


注:本文中的tensorflow.lin_space方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。