當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.less_equal方法代碼示例

本文整理匯總了Python中tensorflow.less_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.less_equal方法的具體用法?Python tensorflow.less_equal怎麽用?Python tensorflow.less_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.less_equal方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testRandomPixelValueScale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:preprocessor_test.py

示例2: assert_box_normalized

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
  """Asserts the input box tensor is normalized.

  Args:
    boxes: a tensor of shape [N, 4] where N is the number of boxes.
    maximum_normalized_coordinate: Maximum coordinate value to be considered
      as normalized, default to 1.1.

  Returns:
    a tf.Assert op which fails when the input box tensor is not normalized.

  Raises:
    ValueError: When the input box tensor is not normalized.
  """
  box_minimum = tf.reduce_min(boxes)
  box_maximum = tf.reduce_max(boxes)
  return tf.Assert(
      tf.logical_and(
          tf.less_equal(box_maximum, maximum_normalized_coordinate),
          tf.greater_equal(box_minimum, 0)),
      [boxes]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:shape_utils.py

示例3: mode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def mode(cls, parameters: Dict[str, Tensor]) -> Tensor:
        mu = parameters["mu"]
        tau = parameters["tau"]
        nu = parameters["nu"]
        beta = parameters["beta"]

        lam = 1./beta
        mode = tf.zeros_like(mu) * tf.zeros_like(mu)
        mode = tf.where(tf.logical_and(tf.greater(nu, mu),
                                       tf.less(mu+lam/tau, nu)),
                        mu+lam/tau,
                        mode)
        mode = tf.where(tf.logical_and(tf.greater(nu, mu),
                                       tf.greater_equal(mu+lam/tau, nu)),
                        nu,
                        mode)
        mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
                                       tf.greater(mu-lam/tau, nu)),
                        mu-lam/tau,
                        mode)
        mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
                                       tf.less_equal(mu-lam/tau, nu)),
                        nu,
                        mode)
        return(mode) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:27,代碼來源:jumpNormalAlgorithms.py

示例4: radial_cutoff

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def radial_cutoff(self, R, rc):
    """Calculates radial cutoff matrix.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors

    Parameters
    ----------
      R [B, N, M]: tf.Tensor
        Distance matrix.
      rc: tf.Variable
        Interaction cutoff [Angstrom].

    Returns
    -------
    FC [B, N, M]: tf.Tensor
      Radial cutoff matrix.
    """
    T = 0.5 * (tf.cos(np.pi * R / (rc)) + 1)
    E = tf.zeros_like(T)
    cond = tf.less_equal(R, rc)
    FC = tf.where(cond, T, E)
    return FC 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:24,代碼來源:layers.py

示例5: filter_outside_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def filter_outside_boxes(boxes, img_h, img_w):
    '''
    :param anchors:boxes with format [xmin, ymin, xmax, ymax]
    :param img_h: height of image
    :param img_w: width of image
    :return: indices of anchors that inside the image boundary
    '''

    with tf.name_scope('filter_outside_boxes'):
        xmin, ymin, xmax, ymax = tf.unstack(boxes, axis=1)

        xmin_index = tf.greater_equal(xmin, 0)
        ymin_index = tf.greater_equal(ymin, 0)
        xmax_index = tf.less_equal(xmax, tf.cast(img_w, tf.float32))
        ymax_index = tf.less_equal(ymax, tf.cast(img_h, tf.float32))

        indices = tf.transpose(tf.stack([xmin_index, ymin_index, xmax_index, ymax_index]))
        indices = tf.cast(indices, dtype=tf.int32)
        indices = tf.reduce_sum(indices, axis=1)
        indices = tf.where(tf.equal(indices, 4))
        # indices = tf.equal(indices, 4)
        return tf.reshape(indices, [-1]) 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:24,代碼來源:boxes_utils.py

示例6: get_histogram

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def get_histogram(img, bin_size=0.2):
    hist_entries = []

    img_r, img_g, img_b = tf.split(img, num_or_size_splits=3, axis=-1)

    for img_chan in [img_r, img_g, img_b]:
        for i in np.arange(-1, 1, bin_size):
            gt = tf.greater(img_chan, i)
            leq = tf.less_equal(img_chan, i + bin_size)

            condition = tf.cast(tf.logical_and(gt, leq), tf.float32)
            hist_entries.append(tf.reduce_sum(condition))

    hist = normalization(hist_entries)

    return hist 
開發者ID:taki0112,項目名稱:Tensorflow-Cookbook,代碼行數:18,代碼來源:ops.py

示例7: radial_cutoff

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def radial_cutoff(self, R, rc):
    """Calculates radial cutoff matrix.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors

    Parameters
    ----------
      R [B, N, M]: tf.Tensor
        Distance matrix.
      rc: tf.Variable
        Interaction cutoff [Angstrom].

    Returns
    -------
      FC [B, N, M]: tf.Tensor
        Radial cutoff matrix.

    """

    T = 0.5 * (tf.cos(np.pi * R / (rc)) + 1)
    E = tf.zeros_like(T)
    cond = tf.less_equal(R, rc)
    FC = tf.where(cond, T, E)
    return FC 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:26,代碼來源:layers.py

示例8: get_batch_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def get_batch_dataset(record_file, parser, config):
    num_threads = tf.constant(config.num_threads, dtype=tf.int32)
    dataset = tf.data.TFRecordDataset(record_file).map(
        parser, num_parallel_calls=num_threads).shuffle(config.capacity).repeat()
    if config.is_bucket:
        buckets = [tf.constant(num) for num in range(*config.bucket_range)]

        def key_func(context_idxs, ques_idxs, context_char_idxs, ques_char_idxs, y1, y2, qa_id):
            c_len = tf.reduce_sum(
                tf.cast(tf.cast(context_idxs, tf.bool), tf.int32))
            buckets_min = [np.iinfo(np.int32).min] + buckets
            buckets_max = buckets + [np.iinfo(np.int32).max]
            conditions_c = tf.logical_and(
                tf.less(buckets_min, c_len), tf.less_equal(c_len, buckets_max))
            bucket_id = tf.reduce_min(tf.where(conditions_c))
            return bucket_id

        def reduce_func(key, elements):
            return elements.batch(config.batch_size)

        dataset = dataset.apply(tf.contrib.data.group_by_window(
            key_func, reduce_func, window_size=5 * config.batch_size)).shuffle(len(buckets) * 25)
    else:
        dataset = dataset.batch(config.batch_size)
    return dataset 
開發者ID:HKUST-KnowComp,項目名稱:R-Net,代碼行數:27,代碼來源:util.py

示例9: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n - 1], where n is the
    number of tensors in 'input_sequence'.

    :param input_seq: input sequence
    :param pos: position of the output tensor

    :return: True if position is in-bounds or input length is dynamic.
    """
    seq_length = input_seq.shape[0]

    if seq_length is None: return True

    seq_length = tf.cast(seq_length, pos.dtype)

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length - 1)

    # pos >= -n and pos < n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:24,代碼來源:sequence_at.py

示例10: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n - 1], where n is the
    number of tensors in 'input_sequence'.

    :param input_seq: input sequence
    :param pos: position of the output tensor

    :return: True if position is in-bounds 
    """
    seq_length = tf.shape(input_seq.to_sparse(), out_type=pos.dtype)[0]

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length - 1)

    # pos >= -n and pos < n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:sequence_erase.py

示例11: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """ 
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n], where n is the 
    number of tensors in 'input_sequence'. 

    :param input_seq: input sequence
    :param pos: position to insert the tensor

    :return: True if position is in-bounds.
    """
    seq_length = tf.shape(input_seq.to_sparse(), out_type=pos.dtype)[0]

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length)

    # pos >= -n and pos <= n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:sequence_insert.py

示例12: read_from_disk

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def read_from_disk(self,queue):
        index_t=queue[0]#tf.random_shuffle(self.input_list)[0]
        index_min=tf.reshape(tf.where(tf.less_equal(self.node,index_t)),[-1])
        node_min=self.node[index_min[-1]]
        node_max=self.node[index_min[-1]+1]
        interval_list=list(range(30,100))
        interval=tf.random_shuffle(interval_list)[0]
        index_d=[tf.cond(tf.greater(index_t-interval,node_min),lambda:index_t-interval,lambda:index_t+interval),tf.cond(tf.less(index_t+interval,node_max),lambda:index_t+interval,lambda:index_t-interval)]
        index_d=tf.random_shuffle(index_d)
        index_d=index_d[0]

        constant_t=tf.read_file(self.img_list[index_t])
        template=tf.image.decode_jpeg(constant_t, channels=3)
        template=template[:,:,::-1]
        constant_d=tf.read_file(self.img_list[index_d])
        detection=tf.image.decode_jpeg(constant_d, channels=3)
        detection=detection[:,:,::-1]

        template_label=self.label_list[index_t]
        detection_label=self.label_list[index_d]

        template_p,template_label_p,_,_=self.crop_resize(template,template_label,1)
        detection_p,detection_label_p,offset,ratio=self.crop_resize(detection,detection_label,2)

        return template_p,template_label_p,detection_p,detection_label_p,offset,ratio,detection,detection_label,index_t,index_d 
開發者ID:makalo,項目名稱:Siamese-RPN-tensorflow,代碼行數:27,代碼來源:image_reader_cuda.py

示例13: keep_for_training

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def keep_for_training(self, features, maximum_length=None):
    """Returns ``True`` if this example should be kept for training.

    Args:
      features: A dictionary of ``tf.Tensor``.
      maximum_length: The maximum length used for training.

    Returns:
      A boolean.
    """
    if isinstance(features, (list, tuple)):
      # Special case for unsupervised inputters that always return a tuple (features, labels).
      features = features[0]
    length = self.get_length(features)
    if length is None:
      return True
    is_valid = tf.greater(length, 0)
    if maximum_length is not None:
      is_valid = tf.logical_and(is_valid, tf.less_equal(length, maximum_length))
    return is_valid 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:22,代碼來源:inputter.py

示例14: _prepare_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import less_equal [as 別名]
def _prepare_image(self, image):
        """Resize the image to a maximum height of `self.height` and maximum
        width of `self.width` while maintaining the aspect ratio. Pad the
        resized image to a fixed size of ``[self.height, self.width]``."""
        img = tf.image.decode_png(image, channels=self.channels)
        dims = tf.shape(img)
        width = self.max_width

        max_width = tf.to_int32(tf.ceil(tf.truediv(dims[1], dims[0]) * self.height_float))
        max_height = tf.to_int32(tf.ceil(tf.truediv(width, max_width) * self.height_float))

        resized = tf.cond(
            tf.greater_equal(width, max_width),
            lambda: tf.cond(
                tf.less_equal(dims[0], self.height),
                lambda: tf.to_float(img),
                lambda: tf.image.resize_images(img, [self.height, max_width],
                                               method=tf.image.ResizeMethod.BICUBIC),
            ),
            lambda: tf.image.resize_images(img, [max_height, width],
                                           method=tf.image.ResizeMethod.BICUBIC)
        )

        padded = tf.image.pad_to_bounding_box(resized, 0, 0, self.height, width)
        return padded 
開發者ID:emedvedev,項目名稱:attention-ocr,代碼行數:27,代碼來源:model.py


注:本文中的tensorflow.less_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。