當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.to_categorical方法代碼示例

本文整理匯總了Python中tensorflow.keras.utils.to_categorical方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.to_categorical方法的具體用法?Python utils.to_categorical怎麽用?Python utils.to_categorical使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.utils的用法示例。


在下文中一共展示了utils.to_categorical方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: segment_objects

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def segment_objects(self, image, normalized=True):
        """Run segmentation prediction for a given image
    
        Arguments:
            image (tensor): Image loaded in a numpy tensor.
                RGB components range is [0.0, 1.0]
            normalized (Bool): Use normalized=True for 
                pixel-wise categorical prediction. False if 
                segmentation will be displayed in RGB
                image format.
        """

        from tensorflow.keras.utils import to_categorical
        image = np.expand_dims(image, axis=0)
        segmentation = self.fcn.predict(image)
        segmentation = np.squeeze(segmentation, axis=0)
        segmentation = np.argmax(segmentation, axis=-1)
        segmentation = to_categorical(segmentation,
                                      num_classes=self.n_classes)
        if not normalized:
            segmentation = segmentation * 255
        segmentation = segmentation.astype('uint8')
        return segmentation 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:25,代碼來源:fcn-12.3.1.py

示例2: load_eval_dataset

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def load_eval_dataset(self):
        """Pre-load test data for evaluation
        """
        (_, _), (x_test, self.y_test) = \
                self.args.dataset.load_data()
        image_size = x_test.shape[1]
        x_test = np.reshape(x_test,
                            [-1, image_size, image_size, 1])
        x_test = x_test.astype('float32') / 255
        x_eval = np.zeros([x_test.shape[0],
                          *self.train_gen.input_shape])
        for i in range(x_eval.shape[0]):
            x_eval[i] = center_crop(x_test[i])

        self.y_test = to_categorical(self.y_test)
        self.x_test = x_eval 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:18,代碼來源:mine-13.8.1.py

示例3: test_svm_score_samples

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_svm_score_samples():
    iris = datasets.load_iris()
    x = iris.data
    y = iris.target

    supervision_metric = 'categorical_hinge'
    ivis_iris = Ivis(k=15, batch_size=16, epochs=5,
                     supervision_metric=supervision_metric)

    # Correctly formatted one-hot labels train successfully
    y = to_categorical(y)
    embeddings = ivis_iris.fit_transform(x, y)

    y_pred = ivis_iris.score_samples(x)

    loss_name = ivis_iris.model_.loss['supervised'].__name__
    assert losses.get(loss_name).__name__ == losses.get(supervision_metric).__name__
    assert ivis_iris.model_.layers[-1].activation.__name__ == 'linear'
    assert ivis_iris.model_.layers[-1].kernel_regularizer is not None
    assert ivis_iris.model_.layers[-1].output_shape[-1] == y.shape[-1] 
開發者ID:beringresearch,項目名稱:ivis,代碼行數:22,代碼來源:test_supervised.py

示例4: _preprocess_labels

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def _preprocess_labels(self, y):
        self.classes_ = unique_labels(y)
        n_labels = len(self.classes_)
        if n_labels == 1:
            raise ValueError("Classifier can't train when only one class "
                             "is present.")
        if self.classes_.dtype in [numpy.int32, numpy.int64]:
            self.label_to_ind_ = {int(lab): ind
                                  for ind, lab in enumerate(self.classes_)}
        else:
            self.label_to_ind_ = {lab: ind
                                  for ind, lab in enumerate(self.classes_)}
        y_ind = numpy.array(
            [self.label_to_ind_[lab] for lab in y]
        )
        y_ = to_categorical(y_ind)
        if n_labels == 2:
            y_ = y_[:, 1:]  # Keep only indicator of positive class
        return y_ 
開發者ID:tslearn-team,項目名稱:tslearn,代碼行數:21,代碼來源:shapelets.py

示例5: test_PREPROCESSOR_patchwisecrop_skipBlanks

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_PREPROCESSOR_patchwisecrop_skipBlanks(self):
        sample_list = self.data_io3D.get_indiceslist()
        pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1,
                          analysis="patchwise-crop", patch_shape=(4,4,4))
        pp.patchwise_skip_blanks = True
        batches = pp.run(sample_list[0:3], training=True, validation=False)
        sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True)
        sample.seg_data = to_categorical(sample.seg_data,
                                         num_classes=sample.classes)
        ready_data = pp.analysis_patchwise_crop(sample, data_aug=False)
        self.assertEqual(len(ready_data), 1)
        self.assertEqual(ready_data[0][0].shape, (4,4,4,1))
        self.assertEqual(ready_data[0][1].shape, (4,4,4,3))

    #-------------------------------------------------#
    #            Analysis: Patchwise-grid             #
    #-------------------------------------------------# 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:19,代碼來源:test_preprocessor.py

示例6: test_PREPROCESSOR_patchwisegrid_2D

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_PREPROCESSOR_patchwisegrid_2D(self):
        sample_list = self.data_io2D.get_indiceslist()
        pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=1,
                          analysis="patchwise-grid", patch_shape=(4,4))
        batches = pp.run(sample_list[0:1], training=False, validation=False)
        self.assertEqual(len(batches), 16)
        sample = self.data_io2D.sample_loader(sample_list[0], load_seg=True)
        sample.seg_data = to_categorical(sample.seg_data,
                                         num_classes=sample.classes)
        pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=1,
                          analysis="patchwise-grid", patch_shape=(5,5))
        ready_data = pp.analysis_patchwise_grid(sample, data_aug=False,
                                                training=True)
        self.assertEqual(len(ready_data), 16)
        self.assertEqual(ready_data[0][0].shape, (5,5,1))
        self.assertEqual(ready_data[0][1].shape, (5,5,3)) 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:18,代碼來源:test_preprocessor.py

示例7: test_PREPROCESSOR_patchwisegrid_3D

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_PREPROCESSOR_patchwisegrid_3D(self):
        sample_list = self.data_io3D.get_indiceslist()
        pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1,
                          analysis="patchwise-grid", patch_shape=(4,4,4))
        batches = pp.run(sample_list[0:1], training=False, validation=False)
        self.assertEqual(len(batches), 64)
        sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True)
        sample.seg_data = to_categorical(sample.seg_data,
                                         num_classes=sample.classes)
        pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1,
                          analysis="patchwise-grid", patch_shape=(5,5,5))
        ready_data = pp.analysis_patchwise_grid(sample, data_aug=False,
                                                training=True)
        self.assertEqual(len(ready_data), 64)
        self.assertEqual(ready_data[0][0].shape, (5,5,5,1))
        self.assertEqual(ready_data[0][1].shape, (5,5,5,3)) 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:18,代碼來源:test_preprocessor.py

示例8: test_PREPROCESSOR_fullimage_2D

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_PREPROCESSOR_fullimage_2D(self):
        sample_list = self.data_io2D.get_indiceslist()
        pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=2,
                          analysis="fullimage")
        batches = pp.run(sample_list[0:3], training=True, validation=False)
        self.assertEqual(len(batches), 2)
        batches = pp.run(sample_list[0:1], training=False, validation=False)
        self.assertEqual(len(batches), 1)
        sample = self.data_io2D.sample_loader(sample_list[0], load_seg=True)
        sample.seg_data = to_categorical(sample.seg_data,
                                         num_classes=sample.classes)
        ready_data = pp.analysis_fullimage(sample, data_aug=False,
                                           training=True)
        self.assertEqual(len(ready_data), 1)
        self.assertEqual(ready_data[0][0].shape, (16,16,1))
        self.assertEqual(ready_data[0][1].shape, (16,16,3)) 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:18,代碼來源:test_preprocessor.py

示例9: test_PREPROCESSOR_fullimage_3D

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_PREPROCESSOR_fullimage_3D(self):
        sample_list = self.data_io3D.get_indiceslist()
        pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=2,
                          analysis="fullimage")
        batches = pp.run(sample_list[0:3], training=True, validation=False)
        self.assertEqual(len(batches), 2)
        batches = pp.run(sample_list[0:1], training=False, validation=False)
        self.assertEqual(len(batches), 1)
        sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True)
        sample.seg_data = to_categorical(sample.seg_data,
                                         num_classes=sample.classes)
        ready_data = pp.analysis_fullimage(sample, data_aug=False,
                                           training=True)
        self.assertEqual(len(ready_data), 1)
        self.assertEqual(ready_data[0][0].shape, (16,16,16,1))
        self.assertEqual(ready_data[0][1].shape, (16,16,16,3)) 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:18,代碼來源:test_preprocessor.py

示例10: setUpClass

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def setUpClass(self):
        np.random.seed(1234)
        # Create 2D data
        img2D = np.random.rand(1, 16, 16, 1) * 255
        self.img2D = img2D.astype(int)
        seg2D = np.random.rand(1, 16, 16, 1) * 3
        self.seg2D = seg2D.astype(int)
        self.seg2D = to_categorical(self.seg2D, num_classes=3)
        # Create 3D data
        img3D = np.random.rand(1, 16, 16, 16, 1) * 255
        self.img3D = img3D.astype(int)
        seg3D = np.random.rand(1, 16, 16, 16, 1) * 3
        self.seg3D = seg3D.astype(int)
        self.seg3D = to_categorical(self.seg3D, num_classes=3)

    #-------------------------------------------------#
    #                Base Functionality               #
    #-------------------------------------------------#
    # Class Creation 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:21,代碼來源:test_dataaugmentation.py

示例11: test_DATAGENERATOR_consistency

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def test_DATAGENERATOR_consistency(self):
        pp_fi = Preprocessor(self.data_io, batch_size=1, data_aug=None,
                             prepare_subfunctions=False, prepare_batches=False,
                             analysis="fullimage")
        data_gen = DataGenerator(self.sample_list, pp_fi,
                                 training=True, shuffle=False, iterations=None)
        i = 0
        for batch in data_gen:
            sample = self.data_io.sample_loader(self.sample_list[i],
                                                load_seg=True)
            self.assertTrue(np.array_equal(batch[0][0], sample.img_data))
            seg = to_categorical(sample.seg_data, num_classes=3)
            self.assertTrue(np.array_equal(batch[1][0], seg))
            i += 1

    # Iteration fixation test 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:18,代碼來源:test_datagenerator.py

示例12: fashion_mnist_dataset

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def fashion_mnist_dataset():
    """
    Load and prepare Fashion MNIST dataset.
    """

    (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
    x_train = x_train.astype('float32') / 255
    x_train = np.reshape(x_train, x_train.shape + (1,))
    y_train = to_categorical(y_train)

    return {
        'X_train': x_train,
        'y_train': y_train,
        'X_test': x_test,
        'y_test': y_test,
        'preprocessor': None,
        'metadata': {'name': 'fashion_mnist'},
    } 
開發者ID:SeldonIO,項目名稱:alibi,代碼行數:20,代碼來源:utils.py

示例13: tf_keras_iris

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def tf_keras_iris(tf_keras_iris_model, tf_keras_iris_ae):
    X, y = load_iris(return_X_y=True)
    X = (X - X.mean(axis=0)) / X.std(axis=0)  # scale dataset

    idx = 145
    X_train, y_train = X[:idx, :], y[:idx]
    # y_train = to_categorical(y_train) # TODO: fine to leave as is?

    # set random seed
    np.random.seed(1)
    tf.set_random_seed(1)

    model = tf_keras_iris_model
    model.fit(X_train, y_train, batch_size=128, epochs=500, verbose=0)

    ae, enc, _ = tf_keras_iris_ae
    ae.fit(X_train, X_train, batch_size=32, epochs=100, verbose=0)

    return X_train, model, ae, enc 
開發者ID:SeldonIO,項目名稱:alibi,代碼行數:21,代碼來源:test_cfproto.py

示例14: load_data_from_scratch

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def load_data_from_scratch(self, test_size=0.2, max_len=100):
        assert self.train_file_path is not None, 'file must not be none '
        stopwords = load_en_stopwords()
        with open(self.train_file_path, 'r', encoding='utf-8') as file:
            lines = file.readlines()
        lines = [line.strip() for line in lines]
        lines = [line.split('##') for line in lines]
        x = [line[0] for line in lines]
        x = [line.split() for line in x]
        data = [word for xx in x for word in xx]
        y = [line[0] for line in lines]

        counter = Counter(data)
        vocab = [k for k, v in counter.items() if v >= 5]

        word_index = {k: v for v, k in enumerate(vocab)}

        max_sentence_length = max([len(words) for words in x])
        max_len = max_len if max_sentence_length > max_len else max_sentence_length

        x_data = [[word_index[word] for word in words if word in word_index.keys() and word not in stopwords] for words
                  in x]
        x_data = pad_sequences(x_data, maxlen=max_len)

        y_data = to_categorical(y)

        x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=test_size)
        return x_train, y_train, x_test, y_test, word_index


# cnn 
開發者ID:msgi,項目名稱:nlp-journey,代碼行數:33,代碼來源:deep_classifier.py

示例15: get_cifar_data

# 需要導入模塊: from tensorflow.keras import utils [as 別名]
# 或者: from tensorflow.keras.utils import to_categorical [as 別名]
def get_cifar_data(num_classes=10):
    """Loads cifar-10 data. Normalize the images and do one-hot encoding for labels"""

    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
    x_train = x_train.astype(np.float32) / 255.
    x_test = x_test.astype(np.float32) / 255.

    y_train_cat = to_categorical(y_train, num_classes=num_classes).astype(np.float32)
    y_test_cat = to_categorical(y_test, num_classes=num_classes).astype(np.float32)

    return x_train, y_train, x_test, y_test, y_train_cat, y_test_cat


########################################################################### 
開發者ID:AakashKumarNain,項目名稱:AugMix_TF2,代碼行數:16,代碼來源:main.py


注:本文中的tensorflow.keras.utils.to_categorical方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。