當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.Adam方法代碼示例

本文整理匯總了Python中tensorflow.keras.optimizers.Adam方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.Adam方法的具體用法?Python optimizers.Adam怎麽用?Python optimizers.Adam使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.optimizers的用法示例。


在下文中一共展示了optimizers.Adam方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dqn

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def test_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=False)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例2: test_double_dqn

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def test_double_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例3: test_duel_dqn

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def test_duel_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions, activation='linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=False, enable_dueling_network=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:25,代碼來源:test_discrete.py

示例4: construct_q_network

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def construct_q_network(self):
        # replacement of the Convolution layers by Dense layers, and change the size of the input space and output space

        # Uses the network architecture found in DeepMind paper
        self.model = Sequential()
        input_layer = Input(shape=(self.observation_size * self.training_param.NUM_FRAMES,))
        layer1 = Dense(self.observation_size * self.training_param.NUM_FRAMES)(input_layer)
        layer1 = Activation('relu')(layer1)
        layer2 = Dense(self.observation_size)(layer1)
        layer2 = Activation('relu')(layer2)
        layer3 = Dense(self.observation_size)(layer2)
        layer3 = Activation('relu')(layer3)
        layer4 = Dense(2 * self.action_size)(layer3)
        layer4 = Activation('relu')(layer4)
        output = Dense(self.action_size)(layer4)

        self.model = Model(inputs=[input_layer], outputs=[output])
        self.model.compile(loss='mse', optimizer=Adam(lr=self.lr_))

        self.target_model = Model(inputs=[input_layer], outputs=[output])
        self.target_model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        self.target_model.set_weights(self.model.get_weights()) 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:24,代碼來源:ml_agent.py

示例5: _build_q_NN

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def _build_q_NN(self):
        input_states = Input(shape=(self.observation_size,))
        input_action = Input(shape=(self.action_size,))
        input_layer = Concatenate()([input_states, input_action])
        
        lay1 = Dense(self.observation_size)(input_layer)
        lay1 = Activation('relu')(lay1)
        
        lay2 = Dense(self.observation_size)(lay1)
        lay2 = Activation('relu')(lay2)
        
        lay3 = Dense(2*self.action_size)(lay2)
        lay3 = Activation('relu')(lay3)
        
        advantage = Dense(1, activation = 'linear')(lay3)
        
        model = Model(inputs=[input_states, input_action], outputs=[advantage])
        model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        
        return model 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:22,代碼來源:ml_agent.py

示例6: main

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def main():
    model = create_model(trainable=TRAINABLE)
    model.summary()

    if TRAINABLE:
        model.load_weights(WEIGHTS)

    train_datagen = DataGenerator(TRAIN_CSV)
    validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))

    optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
    model.compile(loss=loss, optimizer=optimizer, metrics=[])
    
    checkpoint = ModelCheckpoint("model-{val_dice:.2f}.h5", monitor="val_dice", verbose=1, save_best_only=True,
                                 save_weights_only=True, mode="max")
    stop = EarlyStopping(monitor="val_dice", patience=PATIENCE, mode="max")
    reduce_lr = ReduceLROnPlateau(monitor="val_dice", factor=0.2, patience=5, min_lr=1e-6, verbose=1, mode="max")

    model.fit_generator(generator=train_datagen,
                        epochs=EPOCHS,
                        callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
                        workers=THREADS,
                        use_multiprocessing=MULTI_PROCESSING,
                        shuffle=True,
                        verbose=1) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:27,代碼來源:train.py

示例7: main

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def main():
    model = create_model()

    train_datagen = DataGenerator(TRAIN_CSV)
    validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))

    optimizer = Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
    model.compile(loss={"coords" : log_mse, "classes" : focal_loss()}, loss_weights={"coords" : 1, "classes" : 1}, optimizer=optimizer, metrics=[])
    checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
                                 save_weights_only=True, mode="max")
    stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
    reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")

    model.summary()

    model.fit_generator(generator=train_datagen,
                        epochs=EPOCHS,
                        callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
                        workers=THREADS,
                        use_multiprocessing=MULTI_PROCESSING,
                        shuffle=True,
                        verbose=1) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:24,代碼來源:train.py

示例8: image_model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def image_model(lr=0.0001):
    input_1 = Input(shape=(None, None, 3))

    base_model = ResNet50(weights='imagenet', include_top=False)

    x1 = base_model(input_1)
    x1 = GlobalMaxPool2D()(x1)

    dense_1 = Dense(vec_dim, activation="linear", name="dense_image_1")

    x1 = dense_1(x1)

    _norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))

    x1 = _norm(x1)

    model = Model([input_1], x1)

    model.compile(loss="mae", optimizer=Adam(lr))

    model.summary()

    return model 
開發者ID:CVxTz,項目名稱:image_search_engine,代碼行數:25,代碼來源:model_triplet.py

示例9: text_model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def text_model(vocab_size, lr=0.0001):
    input_2 = Input(shape=(None,))

    embed = Embedding(vocab_size, 50, name="embed")
    gru = Bidirectional(GRU(256, return_sequences=True), name="gru_1")
    dense_2 = Dense(vec_dim, activation="linear", name="dense_text_1")

    x2 = embed(input_2)
    x2 = gru(x2)
    x2 = GlobalMaxPool1D()(x2)
    x2 = dense_2(x2)

    _norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))

    x2 = _norm(x2)

    model = Model([input_2], x2)

    model.compile(loss="mae", optimizer=Adam(lr))

    model.summary()

    return model 
開發者ID:CVxTz,項目名稱:image_search_engine,代碼行數:25,代碼來源:model_triplet.py

示例10: build_model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def build_model(self):
        """Build the n_heads of the IIC model
        """
        inputs = Input(shape=self.train_gen.input_shape, name='x')
        x = self.backbone(inputs)
        x = Flatten()(x)
        # number of output heads
        outputs = []
        for i in range(self.args.heads):
            name = "z_head%d" % i
            outputs.append(Dense(self.n_labels,
                                 activation='softmax',
                                 name=name)(x))
        self._model = Model(inputs, outputs, name='encoder')
        optimizer = Adam(lr=1e-3)
        self._model.compile(optimizer=optimizer, loss=self.mi_loss)
        self._model.summary() 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:19,代碼來源:iic-13.5.1.py

示例11: __init__

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def __init__(self, model, loss, metrics, reward_function, optimizer, batch_size, num_epochs,
                 dataset_train, dataset_valid):
        self.model = model
        self.loss = loss
        self.metrics = metrics
        self.reward_function = reward_function
        self.optimizer = optimizer
        self.batch_size = batch_size
        self.num_epochs = num_epochs

        x, y = dataset_train
        split = int(len(x) * 0.9)
        self.train_set = tf.data.Dataset.from_tensor_slices((x[:split], y[:split]))
        self.valid_set = tf.data.Dataset.from_tensor_slices((x[split:], y[split:]))
        self.test_set = tf.data.Dataset.from_tensor_slices(dataset_valid)

        self.mutator = EnasMutator(model)
        self.mutator_optim = Adam(learning_rate=mutator_lr)

        self.baseline = 0. 
開發者ID:microsoft,項目名稱:nni,代碼行數:22,代碼來源:trainer.py

示例12: test_cdqn

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def test_cdqn():
    # TODO: replace this with a simpler environment where we can actually test if it finds a solution
    env = gym.make('Pendulum-v0')
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.shape[0]

    V_model = Sequential()
    V_model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
    V_model.add(Dense(16))
    V_model.add(Activation('relu'))
    V_model.add(Dense(1))

    mu_model = Sequential()
    mu_model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
    mu_model.add(Dense(16))
    mu_model.add(Activation('relu'))
    mu_model.add(Dense(nb_actions))
    
    action_input = Input(shape=(nb_actions,), name='action_input')
    observation_input = Input(shape=(1,) + env.observation_space.shape, name='observation_input')
    x = Concatenate()([action_input, Flatten()(observation_input)])
    x = Dense(16)(x)
    x = Activation('relu')(x)
    x = Dense(((nb_actions * nb_actions + nb_actions) // 2))(x)
    L_model = Model(inputs=[action_input, observation_input], outputs=x)

    memory = SequentialMemory(limit=1000, window_length=1)
    random_process = OrnsteinUhlenbeckProcess(theta=.15, mu=0., sigma=.3, size=nb_actions)
    agent = NAFAgent(nb_actions=nb_actions, V_model=V_model, L_model=L_model, mu_model=mu_model,
                     memory=memory, nb_steps_warmup=50, random_process=random_process,
                     gamma=.99, target_model_update=1e-3)
    agent.compile(Adam(lr=1e-3))

    agent.fit(env, nb_steps=400, visualize=False, verbose=0, nb_max_episode_steps=100)
    h = agent.test(env, nb_episodes=2, visualize=False, nb_max_episode_steps=100)
    # TODO: evaluate history 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:40,代碼來源:test_continuous.py

示例13: test_ddpg

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def test_ddpg():
    # TODO: replace this with a simpler environment where we can actually test if it finds a solution
    env = gym.make('Pendulum-v0')
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.shape[0]

    actor = Sequential()
    actor.add(Flatten(input_shape=(1,) + env.observation_space.shape))
    actor.add(Dense(16))
    actor.add(Activation('relu'))
    actor.add(Dense(nb_actions))
    actor.add(Activation('linear'))

    action_input = Input(shape=(nb_actions,), name='action_input')
    observation_input = Input(shape=(1,) + env.observation_space.shape, name='observation_input')
    flattened_observation = Flatten()(observation_input)
    x = Concatenate()([action_input, flattened_observation])
    x = Dense(16)(x)
    x = Activation('relu')(x)
    x = Dense(1)(x)
    x = Activation('linear')(x)
    critic = Model(inputs=[action_input, observation_input], outputs=x)
    
    memory = SequentialMemory(limit=1000, window_length=1)
    random_process = OrnsteinUhlenbeckProcess(theta=.15, mu=0., sigma=.3)
    agent = DDPGAgent(nb_actions=nb_actions, actor=actor, critic=critic, critic_action_input=action_input,
                      memory=memory, nb_steps_warmup_critic=50, nb_steps_warmup_actor=50,
                      random_process=random_process, gamma=.99, target_model_update=1e-3)
    agent.compile([Adam(lr=1e-3), Adam(lr=1e-3)])

    agent.fit(env, nb_steps=400, visualize=False, verbose=0, nb_max_episode_steps=100)
    h = agent.test(env, nb_episodes=2, visualize=False, nb_max_episode_steps=100)
    # TODO: evaluate history 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:37,代碼來源:test_continuous.py

示例14: train

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def train(
		self,
		mbatch_size=8,
		max_epochs=20,
		):
		self.mbatch_size=mbatch_size
		self.max_epochs=max_epochs
		self.batch_size=100

		self.model.compile(
			sample_weight_mode="temporal",
			loss="binary_crossentropy",
			optimizer=Adam(lr=0.001, clipvalue=1.0)
			)

		train_dataset = self.dataset()

		self.model.fit(
			train_dataset,
			epochs=max_epochs,
			steps_per_epoch=math.ceil(self.batch_size/self.mbatch_size)
			)

		x_test, y_test, _ = list(train_dataset.take(1).as_numpy_iterator())[0]
		y_hat = self.model.predict(x_test[0:1])

		np.set_printoptions(precision=2, suppress=True)
		print("Target:")
		print(np.asarray(y_test[0,0:5,0:self.n_feat]))
		print("Prediction:")
		print(y_hat[0,0:5,0:self.n_feat]) 
開發者ID:anicolson,項目名稱:DeepXi,代碼行數:33,代碼來源:prelim.py

示例15: _build_model_value

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import Adam [as 別名]
def _build_model_value(self):
        input_states = Input(shape=(self.observation_size,))
        lay1 = Dense(self.observation_size)(input_states)
        lay1 = Activation('relu')(lay1)

        lay3 = Dense(2 * self.action_size)(lay1)
        lay3 = Activation('relu')(lay3)
        advantage = Dense(self.action_size, activation='relu')(lay3)
        state_value = Dense(1, activation='linear')(advantage)
        model = Model(inputs=[input_states], outputs=[state_value])
        model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        return model 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:14,代碼來源:ml_agent.py


注:本文中的tensorflow.keras.optimizers.Adam方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。