本文整理匯總了Python中tensorflow.keras.models.model_from_json方法的典型用法代碼示例。如果您正苦於以下問題:Python models.model_from_json方法的具體用法?Python models.model_from_json怎麽用?Python models.model_from_json使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.models
的用法示例。
在下文中一共展示了models.model_from_json方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def load(self, run_number: Union[str, int]='last', name: str='sklearn'):
"""
Load a keras/tf.txt model from pickled instance
Args:
run_number: 'last' or integer value representing the run number
name: name of the model
Returns: scikit learn representation of the model
"""
if run_number is not 'last':
self.number = str(run_number)
json_model_file = open(os.path.join(self.model_path, name + '.json'), "r").read()
loaded_model = model_from_json(json_model_file)
loaded_model.load_weights(os.path.join(self.model_path, name + '.h5'))
return loaded_model
示例2: _store_tf
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def _store_tf(self, name, session):
json_model_file = open(os.path.join(self.model_path, name + '.json'), "r").read()
loaded_model = model_from_json(json_model_file)
loaded_model.load_weights(os.path.join(self.model_path, name + '.h5'))
builder = saved_model_builder.SavedModelBuilder(os.path.join(self.model_path, 'tf.txt'))
signature = predict_signature_def(inputs={'states': loaded_model.input},
outputs={'price': loaded_model.output})
builder.add_meta_graph_and_variables(sess=session,
tags=[tag_constants.SERVING],
signature_def_map={'helpers': signature})
builder.save()
_logger.info("Saved tf.txt model to disk")
示例3: quantized_model_from_json
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def quantized_model_from_json(json_string, custom_objects=None):
if not custom_objects:
custom_objects = {}
# let's make a deep copy to make sure our objects are not shared elsewhere
custom_objects = copy.deepcopy(custom_objects)
_add_supported_quantized_objects(custom_objects)
qmodel = model_from_json(json_string, custom_objects=custom_objects)
return qmodel
示例4: _organize_model
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def _organize_model(cls, model):
"""
Instantiate the model with all hyper-parameters,
set all model parameters and then return the model.
Do not use directly. Use the designated classmethod to load a model.
Parameters
----------
cls : instance of model that inherits from `BaseModelPackage`
a model instance
model : dict
Model dict containing hyper-parameters and model-parameters
Returns
-------
model: instance of model that inherits from `BaseModelPackage`
instance of the model class with hyper-parameters and
model parameters set from the passed model dict
"""
model_params = model.pop('model_params')
hyper_params = model.pop('hyper_params') # hyper-params
# instantiate with hyper-parameters
inst = cls(**hyper_params)
if "model_" in model_params.keys():
# set all model params
inst.model_ = model_from_json(
model_params.pop("model_"),
custom_objects={
"LocalSquaredDistanceLayer": LocalSquaredDistanceLayer,
"GlobalMinPooling1D": GlobalMinPooling1D
}
)
inst.set_weights(model_params.pop("model_weights_"))
for p in model_params.keys():
setattr(inst, p, model_params[p])
inst._X_fit_dims = tuple(inst._X_fit_dims)
inst._build_auxiliary_models()
return inst
示例5: load
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def load(path, filename, **kwargs):
"""Load network from file.
Parameters
----------
path: str
Path to directory where to load model from.
filename: str
Name of file to load model from.
Returns
-------
: dict[str, Union[keras.models.Sequential, function]]
A dictionary of objects that constitute the input model. It must
contain the following two keys:
- 'model': keras.models.Sequential
Keras model instance of the network.
- 'val_fn': function
Function that allows evaluating the original model.
"""
filepath = str(os.path.join(path, filename))
if os.path.exists(filepath + '.json'):
model = models.model_from_json(open(filepath + '.json').read())
try:
model.load_weights(filepath + '.h5')
except OSError:
# Allows h5 files without a .h5 extension to be loaded.
model.load_weights(filepath)
# With this loading method, optimizer and loss cannot be recovered.
# Could be specified by user, but since they are not really needed
# at inference time, set them to the most common choice.
# TODO: Proper reinstantiation should be doable since Keras2
model.compile('sgd', 'categorical_crossentropy',
['accuracy', metrics.top_k_categorical_accuracy])
else:
filepath_custom_objects = kwargs.get('filepath_custom_objects', None)
if filepath_custom_objects is not None:
filepath_custom_objects = str(filepath_custom_objects) # python 2
custom_dicts = assemble_custom_dict(
get_custom_activations_dict(filepath_custom_objects),
get_custom_layers_dict())
try:
model = models.load_model(filepath + '.h5', custom_dicts)
except OSError as e:
print(e)
print("Trying to load without '.h5' extension.")
model = models.load_model(filepath, custom_dicts)
model.compile(model.optimizer, model.loss,
['accuracy', metrics.top_k_categorical_accuracy])
model.summary()
return {'model': model, 'val_fn': model.evaluate}
示例6: load_model
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def load_model(input_model_path, input_json_path=None, input_yaml_path=None):
if not Path(input_model_path).exists():
raise FileNotFoundError(
'Model file `{}` does not exist.'.format(input_model_path))
try:
model = keras.models.load_model(input_model_path)
return model
except FileNotFoundError as err:
logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
raise err
except ValueError as wrong_file_err:
if input_json_path:
if not Path(input_json_path).exists():
raise FileNotFoundError(
'Model description json file `{}` does not exist.'.format(
input_json_path))
try:
model = model_from_json(open(str(input_json_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from json.")
raise err
elif input_yaml_path:
if not Path(input_yaml_path).exists():
raise FileNotFoundError(
'Model description yaml file `{}` does not exist.'.format(
input_yaml_path))
try:
model = model_from_yaml(open(str(input_yaml_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from yaml.")
raise err
else:
logging.error(
'Input file specified only holds the weights, and not '
'the model definition. Save the model using '
'model.save(filename.h5) which will contain the network '
'architecture as well as its weights. '
'If the model is saved using the '
'model.save_weights(filename) function, either '
'input_model_json or input_model_yaml flags should be set to '
'to import the network architecture prior to loading the '
'weights. \n'
'Check the keras documentation for more details '
'(https://keras.io/getting-started/faq/)')
raise wrong_file_err
示例7: prediction
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
""" This function takes as input pretrained weights, noisy voice sound to denoise, predict
the denoise sound and save it to disk.
"""
# load json and create model
json_file = open(weights_path+'/'+name_model+'.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(weights_path+'/'+name_model+'.h5')
print("Loaded model from disk")
# Extracting noise and voice from folder and convert to numpy
audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
frame_length, hop_length_frame, min_duration)
#Dimensions of squared spectrogram
dim_square_spec = int(n_fft / 2) + 1
print(dim_square_spec)
# Create Amplitude and phase of the sounds
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(
audio, dim_square_spec, n_fft, hop_length_fft)
#global scaling to have distribution -1/1
X_in = scaled_in(m_amp_db_audio)
#Reshape for prediction
X_in = X_in.reshape(X_in.shape[0],X_in.shape[1],X_in.shape[2],1)
#Prediction using loaded network
X_pred = loaded_model.predict(X_in)
#Rescale back the noise model
inv_sca_X_pred = inv_scaled_ou(X_pred)
#Remove noise model from noisy speech
X_denoise = m_amp_db_audio - inv_sca_X_pred[:,:,:,0]
#Reconstruct audio from denoised spectrogram and phase
print(X_denoise.shape)
print(m_pha_audio.shape)
print(frame_length)
print(hop_length_fft)
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
#Number of frames
nb_samples = audio_denoise_recons.shape[0]
#Save all frames in one file
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length)*10
librosa.output.write_wav(dir_save_prediction + audio_output_prediction, denoise_long[0, :], sample_rate)
示例8: load_input_model
# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import model_from_json [as 別名]
def load_input_model(input_model_path, input_json_path=None, input_yaml_path=None, custom_objects=None):
if not Path(input_model_path).exists():
raise FileNotFoundError(
'Model file `{}` does not exist.'.format(input_model_path))
try:
model = load_model(input_model_path, custom_objects=custom_objects)
return model
except FileNotFoundError as err:
logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
raise err
except ValueError as wrong_file_err:
if input_json_path:
if not Path(input_json_path).exists():
raise FileNotFoundError(
'Model description json file `{}` does not exist.'.format(
input_json_path))
try:
model = model_from_json(open(str(input_json_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from json.")
raise err
elif input_yaml_path:
if not Path(input_yaml_path).exists():
raise FileNotFoundError(
'Model description yaml file `{}` does not exist.'.format(
input_yaml_path))
try:
model = model_from_yaml(open(str(input_yaml_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from yaml.")
raise err
else:
logging.error(
'Input file specified only holds the weights, and not '
'the model definition. Save the model using '
'model.save(filename.h5) which will contain the network '
'architecture as well as its weights. '
'If the model is saved using the '
'model.save_weights(filename) function, either '
'input_model_json or input_model_yaml flags should be set to '
'to import the network architecture prior to loading the '
'weights. \n'
'Check the keras documentation for more details '
'(https://keras.io/getting-started/faq/)')
raise wrong_file_err