當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Sequential方法代碼示例

本文整理匯總了Python中tensorflow.keras.models.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Sequential方法的具體用法?Python models.Sequential怎麽用?Python models.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.models的用法示例。


在下文中一共展示了models.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )

        self.mlp = Sequential([
            Dense(channels, self.mlp_activation, **layer_kwargs)
            for channels in self.mlp_hidden
        ] + [Dense(self.channels, self.activation, use_bias=self.use_bias, **layer_kwargs)])

        self.built = True 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:19,代碼來源:edge_conv.py

示例2: build

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )
        mlp_layers = []
        for i, channels in enumerate(self.mlp_hidden):
            mlp_layers.extend([
                Dropout(self.dropout_rate),
                Dense(channels, self.mlp_activation, **layer_kwargs)
            ])
        mlp_layers.append(
            Dense(self.channels, 'linear', **layer_kwargs)
        )
        self.mlp = Sequential(mlp_layers)
        self.built = True 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:23,代碼來源:appnp.py

示例3: build

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )

        self.mlp = Sequential([
            Dense(channels, self.mlp_activation, **layer_kwargs)
            for channels in self.mlp_hidden
        ] + [Dense(self.channels, self.activation, use_bias=self.use_bias, **layer_kwargs)])

        if self.epsilon is None:
            self.eps = self.add_weight(shape=(1,),
                                       initializer='zeros',
                                       name='eps')
        else:
            # If epsilon is given, keep it constant
            self.eps = K.constant(self.epsilon)

        self.built = True 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:27,代碼來源:gin_conv.py

示例4: test_single_ddpg_input

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_single_ddpg_input():
    nb_actions = 2

    actor = Sequential()
    actor.add(Flatten(input_shape=(2, 3)))
    actor.add(Dense(nb_actions))

    action_input = Input(shape=(nb_actions,), name='action_input')
    observation_input = Input(shape=(2, 3), name='observation_input')
    x = Concatenate()([action_input, Flatten()(observation_input)])
    x = Dense(1)(x)
    critic = Model(inputs=[action_input, observation_input], outputs=x)

    memory = SequentialMemory(limit=10, window_length=2)
    agent = DDPGAgent(actor=actor, critic=critic, critic_action_input=action_input, memory=memory,
                      nb_actions=2, nb_steps_warmup_critic=5, nb_steps_warmup_actor=5, batch_size=4)
    agent.compile('sgd')
    agent.fit(MultiInputTestEnv((3,)), nb_steps=10) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:20,代碼來源:test_ddpg.py

示例5: test_dqn

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=False)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例6: test_double_dqn

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_double_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例7: test_cem

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_cem():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = EpisodeParameterMemory(limit=1000, window_length=1)
    dqn = CEMAgent(model=model, nb_actions=nb_actions, memory=memory)
    dqn.compile()

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=1)
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:23,代碼來源:test_discrete.py

示例8: test_sarsa

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_sarsa():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions, activation='linear'))

    policy = EpsGreedyQPolicy(eps=.1)
    sarsa = SARSAAgent(model=model, nb_actions=nb_actions, nb_steps_warmup=50, policy=policy)
    sarsa.compile(Adam(lr=1e-3))

    sarsa.fit(env, nb_steps=20000, visualize=False, verbose=0)
    policy.eps = 0.
    h = sarsa.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:23,代碼來源:test_discrete.py

示例9: construct_q_network

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def construct_q_network(self):
        # replacement of the Convolution layers by Dense layers, and change the size of the input space and output space

        # Uses the network architecture found in DeepMind paper
        self.model = Sequential()
        input_layer = Input(shape=(self.observation_size * self.training_param.NUM_FRAMES,))
        layer1 = Dense(self.observation_size * self.training_param.NUM_FRAMES)(input_layer)
        layer1 = Activation('relu')(layer1)
        layer2 = Dense(self.observation_size)(layer1)
        layer2 = Activation('relu')(layer2)
        layer3 = Dense(self.observation_size)(layer2)
        layer3 = Activation('relu')(layer3)
        layer4 = Dense(2 * self.action_size)(layer3)
        layer4 = Activation('relu')(layer4)
        output = Dense(self.action_size)(layer4)

        self.model = Model(inputs=[input_layer], outputs=[output])
        self.model.compile(loss='mse', optimizer=Adam(lr=self.lr_))

        self.target_model = Model(inputs=[input_layer], outputs=[output])
        self.target_model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        self.target_model.set_weights(self.model.get_weights()) 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:24,代碼來源:ml_agent.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def __init__(self,
                 featurizer: Optional[TrackerFeaturizer] = None,
                 priority: int = 1,
                 model: Optional[tf.keras.models.Sequential] = None,
                 graph: Optional[tf.Graph] = None,
                 session: Optional[tf.Session] = None,
                 current_epoch: int = 0,
                 max_history: Optional[int] = None,
                 **kwargs: Any
                 ) -> None:
        if not featurizer:
            featurizer = self._standard_featurizer(max_history)
        super(KerasPolicy, self).__init__(featurizer, priority)

        self._load_params(**kwargs)
        self.model = model
        # by default keras uses default tf graph and global tf session
        # we are going to either load them or create them in train(...)
        self.graph = graph
        self.session = session

        self.current_epoch = current_epoch 
開發者ID:RasaHQ,項目名稱:rasa_core,代碼行數:24,代碼來源:keras_policy.py

示例11: _keras_conv2d_core

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def _keras_conv2d_core(shape=None, data=None):
    assert shape is None or data is None
    if shape is None:
        shape = data.shape

    init = tf.keras.initializers.RandomNormal(seed=1)

    model = Sequential()
    c2d = Conv2D(
        2,
        (3, 3),
        data_format="channels_last",
        use_bias=False,
        kernel_initializer=init,
        input_shape=shape[1:],
    )
    model.add(c2d)

    if data is None:
        data = np.random.uniform(size=shape)
    out = model.predict(data)
    return model, out 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:24,代碼來源:convert_test.py

示例12: _keras_depthwise_conv2d_core

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def _keras_depthwise_conv2d_core(shape=None, data=None):
    assert shape is None or data is None
    if shape is None:
        shape = data.shape

    init = tf.keras.initializers.RandomNormal(seed=1)

    model = Sequential()
    c2d = DepthwiseConv2D(
        (3, 3),
        depthwise_initializer=init,
        data_format="channels_last",
        use_bias=False,
        input_shape=shape[1:],
    )
    model.add(c2d)

    if data is None:
        data = np.random.uniform(size=shape)
    out = model.predict(data)
    return model, out 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:23,代碼來源:convert_test.py

示例13: test_triplet_network

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def test_triplet_network():

    X = np.zeros(shape=(10, 5))
    embedding_dims = 3

    base_model = Sequential()
    base_model.add(Dense(8, input_shape=(X.shape[-1],)))

    model, _, _, _ = triplet_network(base_model, embedding_dims=embedding_dims, embedding_l2=0.1)
    encoder = model.layers[3]

    assert model.layers[3].output_shape == (None, 3)
    assert np.all(base_model.get_weights()[0] == encoder.get_weights()[0])
    assert np.all([isinstance(layer, keras.layers.InputLayer) for layer in model.layers[:3]])

    assert encoder.output_shape == (None, embedding_dims) 
開發者ID:beringresearch,項目名稱:ivis,代碼行數:18,代碼來源:test_network.py

示例14: get_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def get_model(args):
    model = models.Sequential()
    model.add(
        layers.Conv2D(args.conv1_size, (3, 3), activation=args.conv_activation, input_shape=(28, 28, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(args.conv2_size, (3, 3), activation=args.conv_activation))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation=args.conv_activation))
    model.add(layers.Dropout(args.dropout))
    model.add(layers.Flatten())
    model.add(layers.Dense(args.hidden1_size, activation=args.dense_activation))
    model.add(layers.Dense(10, activation='softmax'))

    model.summary()

    model.compile(optimizer=OPTIMIZERS[args.optimizer](learning_rate=args.learning_rate),
                  loss=args.loss,
                  metrics=['accuracy'])

    return model 
開發者ID:polyaxon,項目名稱:polyaxon-examples,代碼行數:22,代碼來源:run.py

示例15: make_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Sequential [as 別名]
def make_model(dummy_data):
  # pylint: disable=redefined-outer-name
  data, _ = dummy_data
  model = Sequential()
  model.add(
      Conv2DMPO(filters=4,
                kernel_size=3,
                num_nodes=2,
                bond_dim=10,
                padding='same',
                input_shape=data.shape[1:],
                name=LAYER_NAME)
      )
  model.add(Flatten())
  model.add(Dense(1, activation='sigmoid'))
  return model 
開發者ID:google,項目名稱:TensorNetwork,代碼行數:18,代碼來源:test_conv_layer.py


注:本文中的tensorflow.keras.models.Sequential方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。