當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Model方法代碼示例

本文整理匯總了Python中tensorflow.keras.models.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Model方法的具體用法?Python models.Model怎麽用?Python models.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.models的用法示例。


在下文中一共展示了models.Model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_single_ddpg_input

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def test_single_ddpg_input():
    nb_actions = 2

    actor = Sequential()
    actor.add(Flatten(input_shape=(2, 3)))
    actor.add(Dense(nb_actions))

    action_input = Input(shape=(nb_actions,), name='action_input')
    observation_input = Input(shape=(2, 3), name='observation_input')
    x = Concatenate()([action_input, Flatten()(observation_input)])
    x = Dense(1)(x)
    critic = Model(inputs=[action_input, observation_input], outputs=x)

    memory = SequentialMemory(limit=10, window_length=2)
    agent = DDPGAgent(actor=actor, critic=critic, critic_action_input=action_input, memory=memory,
                      nb_actions=2, nb_steps_warmup_critic=5, nb_steps_warmup_actor=5, batch_size=4)
    agent.compile('sgd')
    agent.fit(MultiInputTestEnv((3,)), nb_steps=10) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:20,代碼來源:test_ddpg.py

示例2: test_single_continuous_dqn_input

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def test_single_continuous_dqn_input():
    nb_actions = 2

    V_model = Sequential()
    V_model.add(Flatten(input_shape=(2, 3)))
    V_model.add(Dense(1))

    mu_model = Sequential()
    mu_model.add(Flatten(input_shape=(2, 3)))
    mu_model.add(Dense(nb_actions))

    L_input = Input(shape=(2, 3))
    L_input_action = Input(shape=(nb_actions,))
    x = Concatenate()([Flatten()(L_input), L_input_action])
    x = Dense(((nb_actions * nb_actions + nb_actions) // 2))(x)
    L_model = Model(inputs=[L_input_action, L_input], outputs=x)

    memory = SequentialMemory(limit=10, window_length=2)
    agent = NAFAgent(nb_actions=nb_actions, V_model=V_model, L_model=L_model, mu_model=mu_model,
                     memory=memory, nb_steps_warmup=5, batch_size=4)
    agent.compile('sgd')
    agent.fit(MultiInputTestEnv((3,)), nb_steps=10) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:24,代碼來源:test_dqn.py

示例3: make_densenet121_resisc_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def make_densenet121_resisc_model(**model_kwargs) -> tf.keras.Model:
    # Load ImageNet pre-trained DenseNet
    model_notop = DenseNet121(
        include_top=False, weights=None, input_shape=(224, 224, 3)
    )

    # Add new layers
    x = GlobalAveragePooling2D()(model_notop.output)
    predictions = Dense(num_classes, activation="softmax")(x)

    # Create graph of new model and freeze pre-trained layers
    new_model = Model(inputs=model_notop.input, outputs=predictions)

    for layer in new_model.layers[:-1]:
        layer.trainable = False
        if "bn" == layer.name[-2:]:  # allow batchnorm layers to be trainable
            layer.trainable = True

    # compile the model
    new_model.compile(
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
    )

    return new_model 
開發者ID:twosixlabs,項目名稱:armory,代碼行數:26,代碼來源:densenet121_resisc45.py

示例4: build_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def build_model(self):
        inputs = Input(shape=(self.max_len,))

        x = Embedding(len(self.embeddings),
                      300,
                      weights=[self.embeddings],
                      trainable=False)(inputs)

        x = Lambda(lambda t: tf.reduce_mean(t, axis=1))(x)
        x = Dense(128, activation='relu')(x)
        x = Dense(64, activation='relu')(x)
        x = Dense(16, activation='relu')(x)
        predictions = Dense(1, activation='sigmoid')(x)
        model = Model(inputs=inputs, outputs=predictions)
        model.compile(optimizer='adam',
                      loss='binary_crossentropy',
                      metrics=['accuracy'])
        model.summary()
        return model 
開發者ID:msgi,項目名稱:nlp-journey,代碼行數:21,代碼來源:deep_classifier.py

示例5: __init__

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        with graph.as_default():
            if sess is not None:
                set_session(sess)
            inp = None
            output = None
            if self.shared_network is None:
                inp = Input((self.input_dim,))
                output = self.get_network_head(inp).output
            else:
                inp = self.shared_network.input
                output = self.shared_network.output
            output = Dense(
                self.output_dim, activation=self.activation, 
                kernel_initializer='random_normal')(output)
            self.model = Model(inp, output)
            self.model.compile(
                optimizer=SGD(lr=self.lr), loss=self.loss) 
開發者ID:quantylab,項目名稱:rltrader,代碼行數:21,代碼來源:networks.py

示例6: get_network_head

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def get_network_head(inp):
        output = Dense(256, activation='sigmoid', 
            kernel_initializer='random_normal')(inp)
        output = BatchNormalization()(output)
        output = Dropout(0.1)(output)
        output = Dense(128, activation='sigmoid', 
            kernel_initializer='random_normal')(output)
        output = BatchNormalization()(output)
        output = Dropout(0.1)(output)
        output = Dense(64, activation='sigmoid', 
            kernel_initializer='random_normal')(output)
        output = BatchNormalization()(output)
        output = Dropout(0.1)(output)
        output = Dense(32, activation='sigmoid', 
            kernel_initializer='random_normal')(output)
        output = BatchNormalization()(output)
        output = Dropout(0.1)(output)
        return Model(inp, output) 
開發者ID:quantylab,項目名稱:rltrader,代碼行數:20,代碼來源:networks.py

示例7: construct_q_network

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def construct_q_network(self):
        # replacement of the Convolution layers by Dense layers, and change the size of the input space and output space

        # Uses the network architecture found in DeepMind paper
        self.model = Sequential()
        input_layer = Input(shape=(self.observation_size * self.training_param.NUM_FRAMES,))
        layer1 = Dense(self.observation_size * self.training_param.NUM_FRAMES)(input_layer)
        layer1 = Activation('relu')(layer1)
        layer2 = Dense(self.observation_size)(layer1)
        layer2 = Activation('relu')(layer2)
        layer3 = Dense(self.observation_size)(layer2)
        layer3 = Activation('relu')(layer3)
        layer4 = Dense(2 * self.action_size)(layer3)
        layer4 = Activation('relu')(layer4)
        output = Dense(self.action_size)(layer4)

        self.model = Model(inputs=[input_layer], outputs=[output])
        self.model.compile(loss='mse', optimizer=Adam(lr=self.lr_))

        self.target_model = Model(inputs=[input_layer], outputs=[output])
        self.target_model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        self.target_model.set_weights(self.model.get_weights()) 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:24,代碼來源:ml_agent.py

示例8: _build_q_NN

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def _build_q_NN(self):
        input_states = Input(shape=(self.observation_size,))
        input_action = Input(shape=(self.action_size,))
        input_layer = Concatenate()([input_states, input_action])
        
        lay1 = Dense(self.observation_size)(input_layer)
        lay1 = Activation('relu')(lay1)
        
        lay2 = Dense(self.observation_size)(lay1)
        lay2 = Activation('relu')(lay2)
        
        lay3 = Dense(2*self.action_size)(lay2)
        lay3 = Activation('relu')(lay3)
        
        advantage = Dense(1, activation = 'linear')(lay3)
        
        model = Model(inputs=[input_states, input_action], outputs=[advantage])
        model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        
        return model 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:22,代碼來源:ml_agent.py

示例9: image_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def image_model(lr=0.0001):
    input_1 = Input(shape=(None, None, 3))

    base_model = ResNet50(weights='imagenet', include_top=False)

    x1 = base_model(input_1)
    x1 = GlobalMaxPool2D()(x1)

    dense_1 = Dense(vec_dim, activation="linear", name="dense_image_1")

    x1 = dense_1(x1)

    _norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))

    x1 = _norm(x1)

    model = Model([input_1], x1)

    model.compile(loss="mae", optimizer=Adam(lr))

    model.summary()

    return model 
開發者ID:CVxTz,項目名稱:image_search_engine,代碼行數:25,代碼來源:model_triplet.py

示例10: text_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def text_model(vocab_size, lr=0.0001):
    input_2 = Input(shape=(None,))

    embed = Embedding(vocab_size, 50, name="embed")
    gru = Bidirectional(GRU(256, return_sequences=True), name="gru_1")
    dense_2 = Dense(vec_dim, activation="linear", name="dense_text_1")

    x2 = embed(input_2)
    x2 = gru(x2)
    x2 = GlobalMaxPool1D()(x2)
    x2 = dense_2(x2)

    _norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))

    x2 = _norm(x2)

    model = Model([input_2], x2)

    model.compile(loss="mae", optimizer=Adam(lr))

    model.summary()

    return model 
開發者ID:CVxTz,項目名稱:image_search_engine,代碼行數:25,代碼來源:model_triplet.py

示例11: get_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def get_model():
  """Returns sample model."""
  xi = Input((28, 28, 1), name="input")   # pylint: disable=undefined-variable
  x = Conv2D(32, 3, strides=1, padding="same", name="c1")(xi)   # pylint: disable=undefined-variable
  x = BatchNormalization(name="b1")(x)   # pylint: disable=undefined-variable
  x = Activation("relu", name="a1")(x)   # pylint: disable=undefined-variable
  x = MaxPooling2D(2, 2, name="mp1")(x)   # pylint: disable=undefined-variable
  x = QConv2D(32, 3, kernel_quantizer="binary", bias_quantizer="binary",   # pylint: disable=undefined-variable
              strides=1, padding="same", name="c2")(x)
  x = QBatchNormalization(name="b2")(x)   # pylint: disable=undefined-variable
  x = QActivation("binary", name="a2")(x)   # pylint: disable=undefined-variable
  x = MaxPooling2D(2, 2, name="mp2")(x)   # pylint: disable=undefined-variable
  x = QConv2D(32, 3, kernel_quantizer="ternary", bias_quantizer="ternary",   # pylint: disable=undefined-variable
              strides=1, padding="same", activation="binary", name="c3")(x)
  x = Flatten(name="flatten")(x)   # pylint: disable=undefined-variable
  x = Dense(1, name="dense", activation="softmax")(x)   # pylint: disable=undefined-variable

  model = Model(inputs=xi, outputs=x)

  return model 
開發者ID:google,項目名稱:qkeras,代碼行數:22,代碼來源:test_forgiving_factor.py

示例12: build_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def build_model(dist: Union[Distribution, PixelCNN], input_shape: tuple = None, filepath: str = None) \
        -> Tuple[tf.keras.Model, Union[Distribution, PixelCNN]]:
    """
    Create tf.keras.Model from TF distribution.

    Parameters
    ----------
    dist
        TensorFlow distribution.
    input_shape
        Input shape of the model.

    Returns
    -------
    TensorFlow model.
    """
    x_in = Input(shape=input_shape)
    log_prob = dist.log_prob(x_in)
    model = Model(inputs=x_in, outputs=log_prob)
    model.add_loss(-tf.reduce_mean(log_prob))
    if isinstance(filepath, str):
        model.load_weights(filepath)
    return model, dist 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:25,代碼來源:llr.py

示例13: __init__

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def __init__(self, model: tf.keras.Model, hidden_layer: int, output_dim: int, hidden_dim: int = None) -> None:
        """
        Dense layer that extracts the feature map of a hidden layer in a model and computes
        output probabilities over that layer.

        Parameters
        ----------
        model
            tf.keras classification model.
        hidden_layer
            Hidden layer from model where feature map is extracted from.
        output_dim
            Output dimension for softmax layer.
        hidden_dim
            Dimension of optional additional dense layer.
        """
        super(DenseHidden, self).__init__()
        self.partial_model = Model(inputs=model.inputs, outputs=model.layers[hidden_layer].output)
        for layer in self.partial_model.layers:  # freeze model layers
            layer.trainable = False
        self.hidden_dim = hidden_dim
        if hidden_dim is not None:
            self.dense_layer = Dense(hidden_dim, activation=tf.nn.relu)
        self.output_layer = Dense(output_dim, activation=tf.nn.softmax) 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:26,代碼來源:adversarialae.py

示例14: build_model

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def build_model(self, n_inputs, n_outputs):
        """Q Network is 256-256-256 MLP

        Arguments:
            n_inputs (int): input dim
            n_outputs (int): output dim

        Return:
            q_model (Model): DQN
        """
        inputs = Input(shape=(n_inputs, ), name='state')
        x = Dense(256, activation='relu')(inputs)
        x = Dense(256, activation='relu')(x)
        x = Dense(256, activation='relu')(x)
        x = Dense(n_outputs,
                  activation='linear', 
                  name='action')(x)
        q_model = Model(inputs, x)
        q_model.summary()
        return q_model 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:22,代碼來源:dqn-cartpole-9.6.1.py

示例15: compile

# 需要導入模塊: from tensorflow.keras import models [as 別名]
# 或者: from tensorflow.keras.models import Model [as 別名]
def compile(self, optimizer, metrics=[]):
        metrics += [mean_q]  # register default metrics

        # We never train the target model, hence we can set the optimizer and loss arbitrarily.
        self.target_model = clone_model(self.model, self.custom_model_objects)
        self.target_model.compile(optimizer='sgd', loss='mse')
        self.model.compile(optimizer='sgd', loss='mse')

        # Compile model.
        if self.target_model_update < 1.:
            # We use the `AdditionalUpdatesOptimizer` to efficiently soft-update the target model.
            updates = get_soft_target_model_updates(self.target_model, self.model, self.target_model_update)
            optimizer = AdditionalUpdatesOptimizer(optimizer, updates)

        def clipped_masked_error(args):
            y_true, y_pred, mask = args
            loss = huber_loss(y_true, y_pred, self.delta_clip)
            loss *= mask  # apply element-wise mask
            return K.sum(loss, axis=-1)

        # Create trainable model. The problem is that we need to mask the output since we only
        # ever want to update the Q values for a certain action. The way we achieve this is by
        # using a custom Lambda layer that computes the loss. This gives us the necessary flexibility
        # to mask out certain parameters by passing in multiple inputs to the Lambda layer.
        y_pred = self.model.output
        y_true = Input(name='y_true', shape=(self.nb_actions,))
        mask = Input(name='mask', shape=(self.nb_actions,))
        loss_out = Lambda(clipped_masked_error, output_shape=(1,), name='loss')([y_true, y_pred, mask])
        ins = [self.model.input] if type(self.model.input) is not list else self.model.input
        trainable_model = Model(inputs=ins + [y_true, mask], outputs=[loss_out, y_pred])
        assert len(trainable_model.output_names) == 2
        combined_metrics = {trainable_model.output_names[1]: metrics}
        losses = [
            lambda y_true, y_pred: y_pred,  # loss is computed in Lambda layer
            lambda y_true, y_pred: K.zeros_like(y_pred),  # we only include this for the metrics
        ]
        trainable_model.compile(optimizer=optimizer, loss=losses, metrics=combined_metrics)
        self.trainable_model = trainable_model

        self.compiled = True 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:42,代碼來源:dqn.py


注:本文中的tensorflow.keras.models.Model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。