當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Softmax方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.Softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Softmax方法的具體用法?Python layers.Softmax怎麽用?Python layers.Softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Softmax方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_pnet

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def build_pnet(self, input_shape=None):
        if input_shape is None:
            input_shape = (None, None, 3)

        p_inp = Input(input_shape)

        p_layer = Conv2D(10, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_inp)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)
        p_layer = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")(p_layer)

        p_layer = Conv2D(16, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_layer)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)

        p_layer = Conv2D(32, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_layer)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)

        p_layer_out1 = Conv2D(2, kernel_size=(1, 1), strides=(1, 1))(p_layer)
        p_layer_out1 = Softmax(axis=3)(p_layer_out1)

        p_layer_out2 = Conv2D(4, kernel_size=(1, 1), strides=(1, 1))(p_layer)

        p_net = Model(p_inp, [p_layer_out2, p_layer_out1])

        return p_net 
開發者ID:ipazc,項目名稱:mtcnn,代碼行數:26,代碼來源:factory.py

示例2: build

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def build(self, hp, inputs=None):
        inputs = nest.flatten(inputs)
        utils.validate_num_inputs(inputs, 1)
        input_node = inputs[0]
        output_node = input_node

        # Reduce the tensor to a vector.
        if len(output_node.shape) > 2:
            output_node = reduction.SpatialReduction().build(hp, output_node)

        if self.dropout_rate is not None:
            dropout_rate = self.dropout_rate
        else:
            dropout_rate = hp.Choice('dropout_rate', [0.0, 0.25, 0.5], default=0)

        if dropout_rate > 0:
            output_node = layers.Dropout(dropout_rate)(output_node)
        output_node = layers.Dense(self.output_shape[-1])(output_node)
        if isinstance(self.loss, tf.keras.losses.BinaryCrossentropy):
            output_node = layers.Activation(activations.sigmoid,
                                            name=self.name)(output_node)
        else:
            output_node = layers.Softmax(name=self.name)(output_node)
        return output_node 
開發者ID:keras-team,項目名稱:autokeras,代碼行數:26,代碼來源:heads.py

示例3: test_compute_model_performance_multitask_classifier

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def test_compute_model_performance_multitask_classifier(self):
    n_data_points = 20
    n_features = 1
    n_tasks = 2
    n_classes = 2

    X = np.ones(shape=(n_data_points // 2, n_features)) * -1
    X1 = np.ones(shape=(n_data_points // 2, n_features))
    X = np.concatenate((X, X1))
    class_1 = np.array([[0.0, 1.0] for x in range(int(n_data_points / 2))])
    class_0 = np.array([[1.0, 0.0] for x in range(int(n_data_points / 2))])
    y1 = np.concatenate((class_0, class_1))
    y2 = np.concatenate((class_1, class_0))
    y = np.stack([y1, y2], axis=1)
    dataset = NumpyDataset(X, y)

    features = layers.Input(shape=(n_data_points // 2, n_features))
    dense = layers.Dense(n_tasks * n_classes)(features)
    logits = layers.Reshape((n_tasks, n_classes))(dense)
    output = layers.Softmax()(logits)
    keras_model = tf.keras.Model(inputs=features, outputs=[output, logits])
    model = dc.models.KerasModel(
        keras_model,
        dc.models.losses.SoftmaxCrossEntropy(),
        output_types=['prediction', 'loss'],
        learning_rate=0.01,
        batch_size=n_data_points)

    model.fit(dataset, nb_epoch=1000)
    metric = dc.metrics.Metric(
        dc.metrics.roc_auc_score, np.mean, mode="classification")

    scores = model.evaluate_generator(
        model.default_generator(dataset), [metric], per_task_metrics=True)
    scores = list(scores[1].values())
    # Loosening atol to see if tests stop failing sporadically
    assert np.all(np.isclose(scores, [1.0, 1.0], atol=0.50)) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:39,代碼來源:test_generator_evaluator.py

示例4: test_compute_model_performance_singletask_classifier

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def test_compute_model_performance_singletask_classifier(self):
    n_data_points = 20
    n_features = 10

    X = np.ones(shape=(int(n_data_points / 2), n_features)) * -1
    X1 = np.ones(shape=(int(n_data_points / 2), n_features))
    X = np.concatenate((X, X1))
    class_1 = np.array([[0.0, 1.0] for x in range(int(n_data_points / 2))])
    class_0 = np.array([[1.0, 0.0] for x in range(int(n_data_points / 2))])
    y = np.concatenate((class_0, class_1))
    dataset = NumpyDataset(X, y)

    features = layers.Input(shape=(n_features,))
    dense = layers.Dense(2)(features)
    output = layers.Softmax()(dense)
    keras_model = tf.keras.Model(inputs=features, outputs=[output])
    model = dc.models.KerasModel(
        keras_model, dc.models.losses.SoftmaxCrossEntropy(), learning_rate=0.1)

    model.fit(dataset, nb_epoch=1000)
    metric = dc.metrics.Metric(
        dc.metrics.roc_auc_score, np.mean, mode="classification")

    scores = model.evaluate_generator(
        model.default_generator(dataset), [metric], per_task_metrics=True)
    scores = list(scores[1].values())
    assert np.isclose(scores, [1.0], atol=0.05) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:29,代碼來源:test_generator_evaluator.py

示例5: create_output

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def create_output(self, layer):
    return Softmax()(layer) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:4,代碼來源:progressive_multitask.py

示例6: _build_graph

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def _build_graph(self):
    smile_images = Input(shape=self.input_shape)
    stem = chemnet_layers.Stem(self.base_filters)(smile_images)

    inceptionA_out = self.build_inception_module(inputs=stem, type="A")
    reductionA_out = chemnet_layers.ReductionA(
        self.base_filters)(inceptionA_out)

    inceptionB_out = self.build_inception_module(
        inputs=reductionA_out, type="B")
    reductionB_out = chemnet_layers.ReductionB(
        self.base_filters)(inceptionB_out)

    inceptionC_out = self.build_inception_module(
        inputs=reductionB_out, type="C")
    avg_pooling_out = GlobalAveragePooling2D()(inceptionC_out)

    if self.mode == "classification":
      logits = Dense(self.n_tasks * self.n_classes)(avg_pooling_out)
      logits = Reshape((self.n_tasks, self.n_classes))(logits)
      if self.n_classes == 2:
        output = Activation(activation='sigmoid')(logits)
        loss = SigmoidCrossEntropy()
      else:
        output = Softmax()(logits)
        loss = SoftmaxCrossEntropy()
      outputs = [output, logits]
      output_types = ['prediction', 'loss']

    else:
      output = Dense(self.n_tasks * 1)(avg_pooling_out)
      output = Reshape((self.n_tasks, 1))(output)
      outputs = [output]
      output_types = ['prediction']
      loss = L2Loss()

    model = tf.keras.Model(inputs=[smile_images], outputs=outputs)
    return model, loss, output_types 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:40,代碼來源:chemnet_models.py

示例7: build_rnet

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def build_rnet(self, input_shape=None):
        if input_shape is None:
            input_shape = (24, 24, 3)

        r_inp = Input(input_shape)

        r_layer = Conv2D(28, kernel_size=(3, 3), strides=(1, 1), padding="valid")(r_inp)
        r_layer = PReLU(shared_axes=[1, 2])(r_layer)
        r_layer = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(r_layer)

        r_layer = Conv2D(48, kernel_size=(3, 3), strides=(1, 1), padding="valid")(r_layer)
        r_layer = PReLU(shared_axes=[1, 2])(r_layer)
        r_layer = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="valid")(r_layer)

        r_layer = Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding="valid")(r_layer)
        r_layer = PReLU(shared_axes=[1, 2])(r_layer)
        r_layer = Flatten()(r_layer)
        r_layer = Dense(128)(r_layer)
        r_layer = PReLU()(r_layer)

        r_layer_out1 = Dense(2)(r_layer)
        r_layer_out1 = Softmax(axis=1)(r_layer_out1)

        r_layer_out2 = Dense(4)(r_layer)

        r_net = Model(r_inp, [r_layer_out2, r_layer_out1])

        return r_net 
開發者ID:ipazc,項目名稱:mtcnn,代碼行數:30,代碼來源:factory.py

示例8: build_onet

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def build_onet(self, input_shape=None):
        if input_shape is None:
            input_shape = (48, 48, 3)

        o_inp = Input(input_shape)
        o_layer = Conv2D(32, kernel_size=(3, 3), strides=(1, 1), padding="valid")(o_inp)
        o_layer = PReLU(shared_axes=[1, 2])(o_layer)
        o_layer = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(o_layer)

        o_layer = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding="valid")(o_layer)
        o_layer = PReLU(shared_axes=[1, 2])(o_layer)
        o_layer = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="valid")(o_layer)

        o_layer = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding="valid")(o_layer)
        o_layer = PReLU(shared_axes=[1, 2])(o_layer)
        o_layer = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")(o_layer)

        o_layer = Conv2D(128, kernel_size=(2, 2), strides=(1, 1), padding="valid")(o_layer)
        o_layer = PReLU(shared_axes=[1, 2])(o_layer)

        o_layer = Flatten()(o_layer)
        o_layer = Dense(256)(o_layer)
        o_layer = PReLU()(o_layer)

        o_layer_out1 = Dense(2)(o_layer)
        o_layer_out1 = Softmax(axis=1)(o_layer_out1)
        o_layer_out2 = Dense(4)(o_layer)
        o_layer_out3 = Dense(10)(o_layer)

        o_net = Model(o_inp, [o_layer_out2, o_layer_out3, o_layer_out1])
        return o_net 
開發者ID:ipazc,項目名稱:mtcnn,代碼行數:33,代碼來源:factory.py

示例9: darknet19

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def darknet19(inputs):
    """Generate Darknet-19 model for Imagenet classification."""
    body = darknet19_body()(inputs)
    x = DarknetConv2D(1000, (1, 1))(body)
    x = GlobalAveragePooling2D()(x)
    logits = Softmax()(x)
    return Model(inputs, logits) 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:9,代碼來源:yolo2_darknet.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 groups=32,
                 num_branches=2,
                 reduction=16,
                 min_channels=32,
                 data_format="channels_last",
                 **kwargs):
        super(SKConvBlock, self).__init__(**kwargs)
        self.num_branches = num_branches
        self.out_channels = out_channels
        self.data_format = data_format
        self.axis = get_channel_axis(data_format)
        mid_channels = max(in_channels // reduction, min_channels)

        self.branches = Concurrent(
            stack=True,
            data_format=data_format,
            name="branches")
        for i in range(num_branches):
            dilation = 1 + i
            self.branches.children.append(conv3x3_block(
                in_channels=in_channels,
                out_channels=out_channels,
                strides=strides,
                padding=dilation,
                dilation=dilation,
                groups=groups,
                data_format=data_format,
                name="branch{}".format(i + 2)))
        self.pool = nn.GlobalAveragePooling2D(
            data_format=data_format,
            name="pool")
        self.fc1 = conv1x1_block(
            in_channels=out_channels,
            out_channels=mid_channels,
            data_format=data_format,
            name="fc1")
        self.fc2 = conv1x1(
            in_channels=mid_channels,
            out_channels=(out_channels * num_branches),
            data_format=data_format,
            name="fc2")
        self.softmax = nn.Softmax(axis=self.axis) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:48,代碼來源:sknet.py

示例11: build_fcn

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Softmax [as 別名]
def build_fcn(input_shape,
              backbone,
              n_classes=4):
    """Helper function to build an FCN model.
        
    Arguments:
        backbone (Model): A backbone network
            such as ResNetv2 or v1
        n_classes (int): Number of object classes
            including background.
    """

    inputs = Input(shape=input_shape)
    features = backbone(inputs)

    main_feature = features[0]
    features = features[1:]
    out_features = [main_feature]
    feature_size = 8
    size = 2
    # other half of the features pyramid
    # including upsampling to restore the
    # feature maps to the dimensions
    # equal to 1/4 the image size
    for feature in features:
        postfix = "fcn_" + str(feature_size)
        feature = conv_layer(feature,
                             filters=256,
                             use_maxpool=False,
                             postfix=postfix)
        postfix = postfix + "_up2d"
        feature = UpSampling2D(size=size,
                               interpolation='bilinear',
                               name=postfix)(feature)
        size = size * 2
        feature_size = feature_size * 2
        out_features.append(feature)

    # concatenate all upsampled features
    x = Concatenate()(out_features)
    # perform 2 additional feature extraction 
    # and upsampling
    x = tconv_layer(x, 256, postfix="up_x2")
    x = tconv_layer(x, 256, postfix="up_x4")
    # generate the pixel-wise classifier
    x = Conv2DTranspose(filters=n_classes,
                        kernel_size=1,
                        strides=1,
                        padding='same',
                        kernel_initializer='he_normal',
                        name="pre_activation")(x)
    x = Softmax(name="segmentation")(x)

    model = Model(inputs, x, name="fcn")

    return model 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:58,代碼來源:model.py


注:本文中的tensorflow.keras.layers.Softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。