本文整理匯總了Python中tensorflow.keras.layers.Multiply方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Multiply方法的具體用法?Python layers.Multiply怎麽用?Python layers.Multiply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.Multiply方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _se_block
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def _se_block(inputs, filters, se_ratio, prefix):
x = GlobalAveragePooling2D(name=prefix + 'squeeze_excite/AvgPool')(inputs)
if K.image_data_format() == 'channels_first':
x = Reshape((filters, 1, 1))(x)
else:
x = Reshape((1, 1, filters))(x)
x = Conv2D(_depth(filters * se_ratio),
kernel_size=1,
padding='same',
name=prefix + 'squeeze_excite/Conv')(x)
x = ReLU(name=prefix + 'squeeze_excite/Relu')(x)
x = Conv2D(filters,
kernel_size=1,
padding='same',
name=prefix + 'squeeze_excite/Conv_1')(x)
x = Activation(hard_sigmoid)(x)
#if K.backend() == 'theano':
## For the Theano backend, we have to explicitly make
## the excitation weights broadcastable.
#x = Lambda(
#lambda br: K.pattern_broadcast(br, [True, True, True, False]),
#output_shape=lambda input_shape: input_shape,
#name=prefix + 'squeeze_excite/broadcast')(x)
x = Multiply(name=prefix + 'squeeze_excite/Mul')([inputs, x])
return x
示例2: TemporalDropout
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def TemporalDropout(inputs, dropout=0.0):
"""
Drops with :dropout probability temporal steps of input 3D tensor
"""
# TO DO: adapt for >3D tensors
if dropout == 0.0:
return inputs
inputs_func = lambda x: K.ones_like(inputs[:, :, 0:1])
inputs_mask = Lambda(inputs_func)(inputs)
inputs_mask = Dropout(dropout)(inputs_mask)
tiling_shape = [1, 1, K.shape(inputs)[2]] + [1] * (K.ndim(inputs) - 3)
inputs_mask = Lambda(K.tile, arguments={"n": tiling_shape},
output_shape=inputs._keras_shape[1:])(inputs_mask)
answer = Multiply()([inputs, inputs_mask])
return answer
示例3: multiplicative_self_attention
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def multiplicative_self_attention(units, n_hidden=None, n_output_features=None, activation=None):
"""
Compute multiplicative self attention for time series of vectors (with batch dimension)
the formula: score(h_i, h_j) = <W_1 h_i, W_2 h_j>, W_1 and W_2 are learnable matrices
with dimensionality [n_hidden, n_input_features]
Args:
units: tf tensor with dimensionality [batch_size, time_steps, n_input_features]
n_hidden: number of units in hidden representation of similarity measure
n_output_features: number of features in output dense layer
activation: activation at the output
Returns:
output: self attended tensor with dimensionality [batch_size, time_steps, n_output_features]
"""
n_input_features = K.int_shape(units)[2]
if n_hidden is None:
n_hidden = n_input_features
if n_output_features is None:
n_output_features = n_input_features
exp1 = Lambda(lambda x: expand_tile(x, axis=1))(units)
exp2 = Lambda(lambda x: expand_tile(x, axis=2))(units)
queries = Dense(n_hidden)(exp1)
keys = Dense(n_hidden)(exp2)
scores = Lambda(lambda x: K.sum(queries * x, axis=3, keepdims=True))(keys)
attention = Lambda(lambda x: softmax(x, axis=2))(scores)
mult = Multiply()([attention, exp1])
attended_units = Lambda(lambda x: K.sum(x, axis=2))(mult)
output = Dense(n_output_features, activation=activation)(attended_units)
return output
示例4: channel_squeeze_excite_block
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def channel_squeeze_excite_block(input, ratio=0.25):
init = input
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
filters = init._keras_shape[channel_axis]
cse_shape = (1, 1, filters)
cse = layers.GlobalAveragePooling2D()(init)
cse = layers.Reshape(cse_shape)(cse)
ratio_filters = int(np.round(filters * ratio))
if ratio_filters < 1:
ratio_filters += 1
cse = layers.Conv2D(
ratio_filters,
(1, 1),
padding="same",
activation="relu",
kernel_initializer="he_normal",
use_bias=False,
)(cse)
cse = layers.BatchNormalization()(cse)
cse = layers.Conv2D(
filters,
(1, 1),
activation="sigmoid",
kernel_initializer="he_normal",
use_bias=False,
)(cse)
if K.image_data_format() == "channels_first":
cse = layers.Permute((3, 1, 2))(cse)
cse = layers.Multiply()([init, cse])
return cse
示例5: spatial_squeeze_excite_block
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def spatial_squeeze_excite_block(input):
sse = layers.Conv2D(
1,
(1, 1),
activation="sigmoid",
padding="same",
kernel_initializer="he_normal",
use_bias=False,
)(input)
sse = layers.Multiply()([input, sse])
return sse
示例6: _fca_block
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def _fca_block(inputs, reduct_ratio, block_id):
in_channels = inputs.shape.as_list()[-1]
#in_shapes = inputs.shape.as_list()[1:3]
reduct_channels = int(in_channels // reduct_ratio)
prefix = 'fca_block_{}_'.format(block_id)
x = GlobalAveragePooling2D(name=prefix + 'average_pooling')(inputs)
x = Dense(reduct_channels, activation='relu', name=prefix + 'fc1')(x)
x = Dense(in_channels, activation='sigmoid', name=prefix + 'fc2')(x)
x = Reshape((1,1,in_channels),name='reshape')(x)
x = Multiply(name=prefix + 'multiply')([x, inputs])
return x
示例7: hard_swish
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def hard_swish(x):
return Multiply()([Activation(hard_sigmoid)(x), x])
# This function is taken from the original tf repo.
# It ensures that all layers have a channel number that is divisible by 8
# It can be seen here:
# https://github.com/tensorflow/models/blob/master/research/
# slim/nets/mobilenet/mobilenet.py
示例8: add_adapter
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def add_adapter(self, all_layers, task, layer_num):
"""Add an adapter connection for given task/layer combo"""
i = layer_num
prev_layers = []
trainable_layers = []
# Handle output layer
if i < len(self.layer_sizes):
layer_sizes = self.layer_sizes
alpha_init_stddev = self.alpha_init_stddevs[i]
weight_init_stddev = self.weight_init_stddevs[i]
bias_init_const = self.bias_init_consts[i]
elif i == len(self.layer_sizes):
layer_sizes = self.layer_sizes + [self.n_outputs]
alpha_init_stddev = self.alpha_init_stddevs[-1]
weight_init_stddev = self.weight_init_stddevs[-1]
bias_init_const = self.bias_init_consts[-1]
else:
raise ValueError("layer_num too large for add_adapter.")
# Iterate over all previous tasks.
for prev_task in range(task):
prev_layers.append(all_layers[(i - 1, prev_task)])
# prev_layers is a list with elements of size
# (batch_size, layer_sizes[i-1])
if len(prev_layers) == 1:
prev_layer = prev_layers[0]
else:
prev_layer = Concatenate(axis=1)(prev_layers)
alpha = layers.Variable(
tf.random.truncated_normal((1,), stddev=alpha_init_stddev))
trainable_layers.append(alpha)
prev_layer = Multiply()([prev_layer, alpha([prev_layer])])
dense1 = Dense(
layer_sizes[i - 1],
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=weight_init_stddev),
bias_initializer=tf.constant_initializer(value=bias_init_const))
prev_layer = dense1(prev_layer)
trainable_layers.append(dense1)
dense2 = Dense(
layer_sizes[i],
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=weight_init_stddev),
use_bias=False)
prev_layer = dense2(prev_layer)
trainable_layers.append(dense2)
return prev_layer, trainable_layers
示例9: os_bottleneck
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Multiply [as 別名]
def os_bottleneck(x,
out_filters,
bottleneck_reduction=4):
"""Utility function to implement the OSNet bottleneck module.
# Arguments
x: input tensor.
out_filters: number of output filters.
# Returns
Output tensor after applying the OSNet bottleneck.
"""
in_filters = x.shape[-1].value
mid_filters = out_filters // bottleneck_reduction
identity = x
x1 = conv2d_bn(x, mid_filters, kernel_size=(1, 1))
branch1 = light_conv3x3_bn(x1, mid_filters)
branch2 = light_conv3x3_bn(x1, mid_filters)
branch2 = light_conv3x3_bn(branch2, mid_filters)
branch3 = light_conv3x3_bn(x1, mid_filters)
branch3 = light_conv3x3_bn(branch3, mid_filters)
branch3 = light_conv3x3_bn(branch3, mid_filters)
branch4 = light_conv3x3_bn(x1, mid_filters)
branch4 = light_conv3x3_bn(branch4, mid_filters)
branch4 = light_conv3x3_bn(branch4, mid_filters)
branch4 = light_conv3x3_bn(branch4, mid_filters)
gate = get_aggregation_gate(mid_filters)
x2 = layers.Add()([
layers.Multiply()([branch1, gate(branch1)]),
layers.Multiply()([branch2, gate(branch2)]),
layers.Multiply()([branch3, gate(branch3)]),
layers.Multiply()([branch4, gate(branch4)])])
x3 = conv2d_bn(x2, out_filters, kernel_size=(1, 1), activation=None)
if in_filters != out_filters:
identity = conv2d_bn(identity, out_filters, kernel_size=(1, 1), activation=None)
out = layers.Add()([identity, x3]) # residual connection
out = layers.Activation('relu')(out)
return out