當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.MaxPooling2D方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.MaxPooling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.MaxPooling2D方法的具體用法?Python layers.MaxPooling2D怎麽用?Python layers.MaxPooling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.MaxPooling2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: conv_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def conv_layer(inputs,
               filters=32,
               kernel_size=3,
               strides=1,
               use_maxpool=True,
               postfix=None,
               activation=None):

    x = conv2d(inputs,
               filters=filters,
               kernel_size=kernel_size,
               strides=strides,
               name='conv'+postfix)
    x = BatchNormalization(name="bn"+postfix)(x)
    x = ELU(name='elu'+postfix)(x)
    if use_maxpool:
        x = MaxPooling2D(name='pool'+postfix)(x)
    return x 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:20,代碼來源:model.py

示例2: conv_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def conv_layer(inputs,
               filters=32,
               kernel_size=3,
               strides=1,
               use_maxpool=True,
               postfix=None,
               activation=None):
    """Helper function to build Conv2D-BN-ReLU layer
        with optional MaxPooling2D.
    """

    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=strides,
               kernel_initializer='he_normal',
               name="conv_"+postfix,
               padding='same')(inputs)
    x = BatchNormalization(name="bn_"+postfix)(x)
    x = Activation('relu', name='relu_'+postfix)(x)
    if use_maxpool:
        x = MaxPooling2D(name='pool'+postfix)(x)
    return x 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:24,代碼來源:model.py

示例3: get_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def get_model(args):
    model = models.Sequential()
    model.add(
        layers.Conv2D(args.conv1_size, (3, 3), activation=args.conv_activation, input_shape=(28, 28, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(args.conv2_size, (3, 3), activation=args.conv_activation))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation=args.conv_activation))
    model.add(layers.Dropout(args.dropout))
    model.add(layers.Flatten())
    model.add(layers.Dense(args.hidden1_size, activation=args.dense_activation))
    model.add(layers.Dense(10, activation='softmax'))

    model.summary()

    model.compile(optimizer=OPTIMIZERS[args.optimizer](learning_rate=args.learning_rate),
                  loss=args.loss,
                  metrics=['accuracy'])

    return model 
開發者ID:polyaxon,項目名稱:polyaxon-examples,代碼行數:22,代碼來源:run.py

示例4: build_pnet

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def build_pnet(self, input_shape=None):
        if input_shape is None:
            input_shape = (None, None, 3)

        p_inp = Input(input_shape)

        p_layer = Conv2D(10, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_inp)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)
        p_layer = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")(p_layer)

        p_layer = Conv2D(16, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_layer)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)

        p_layer = Conv2D(32, kernel_size=(3, 3), strides=(1, 1), padding="valid")(p_layer)
        p_layer = PReLU(shared_axes=[1, 2])(p_layer)

        p_layer_out1 = Conv2D(2, kernel_size=(1, 1), strides=(1, 1))(p_layer)
        p_layer_out1 = Softmax(axis=3)(p_layer_out1)

        p_layer_out2 = Conv2D(4, kernel_size=(1, 1), strides=(1, 1))(p_layer)

        p_net = Model(p_inp, [p_layer_out2, p_layer_out1])

        return p_net 
開發者ID:ipazc,項目名稱:mtcnn,代碼行數:26,代碼來源:factory.py

示例5: residual

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def residual(x, num_filters,
             kernel_size=(3, 3),
             activation='relu',
             pool_strides=(2, 2),
             max_pooling=True):
    "Residual block."
    if max_pooling:
        res = layers.Conv2D(num_filters, kernel_size=(
            1, 1), strides=pool_strides, padding='same')(x)
    elif num_filters != keras.backend.int_shape(x)[-1]:
        res = layers.Conv2D(num_filters, kernel_size=(1, 1), padding='same')(x)
    else:
        res = x

    x = sep_conv(x, num_filters, kernel_size, activation)
    x = sep_conv(x, num_filters, kernel_size, activation)
    if max_pooling:
        x = layers.MaxPooling2D(
            kernel_size, strides=pool_strides, padding='same')(x)

    x = layers.add([x, res])
    return x 
開發者ID:keras-team,項目名稱:keras-tuner,代碼行數:24,代碼來源:xception.py

示例6: _initial_conv_block_inception

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the DPN
    Args:
        input: input tensor
        initial_conv_filters: number of filters for initial conv block
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:20,代碼來源:dual_path_network.py

示例7: down_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def down_stage(inputs, filters, kernel_size=3,
               activation="relu", padding="SAME"):
    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(inputs)
    conv = GroupNormalization()(conv)
    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    pool = MaxPooling2D()(conv)
    return conv, pool 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:12,代碼來源:dropout_unet.py

示例8: make_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def make_model(**kwargs) -> tf.keras.Model:
    # Model is based on MicronNet: https://arxiv.org/abs/1804.00497v3

    img_size = 48
    NUM_CLASSES = 43
    eps = 1e-6

    inputs = Input(shape=(img_size, img_size, 3))
    x = Conv2D(1, (1, 1), padding="same")(inputs)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = Conv2D(29, (5, 5), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Conv2D(59, (3, 3), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Conv2D(74, (3, 3), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Flatten()(x)
    x = Dense(300)(x)
    x = Activation("relu")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Dense(300, activation="relu")(x)
    predictions = Dense(NUM_CLASSES, activation="softmax")(x)

    model = Model(inputs=inputs, outputs=predictions)
    model.compile(
        optimizer=tf.keras.optimizers.SGD(
            lr=0.01, decay=1e-6, momentum=0.9, nesterov=True
        ),
        loss=tf.keras.losses.sparse_categorical_crossentropy,
        metrics=["accuracy"],
    )

    return model 
開發者ID:twosixlabs,項目名稱:armory,代碼行數:42,代碼來源:micronnet_gtsrb.py

示例9: make_cifar_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def make_cifar_model(**kwargs) -> tf.keras.Model:
    model = Sequential()
    model.add(
        Conv2D(
            filters=4,
            kernel_size=(5, 5),
            strides=1,
            activation="relu",
            input_shape=(32, 32, 3),
        )
    )
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(
        Conv2D(
            filters=10,
            kernel_size=(5, 5),
            strides=1,
            activation="relu",
            input_shape=(23, 23, 4),
        )
    )
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(100, activation="relu"))
    model.add(Dense(10, activation="softmax"))

    model.compile(
        loss=tf.keras.losses.sparse_categorical_crossentropy,
        optimizer=tf.keras.optimizers.Adam(lr=0.003),
        metrics=["accuracy"],
    )
    return model 
開發者ID:twosixlabs,項目名稱:armory,代碼行數:34,代碼來源:cifar.py

示例10: make_mnist_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def make_mnist_model(**kwargs) -> tf.keras.Model:
    model = Sequential()
    model.add(
        Conv2D(
            filters=4,
            kernel_size=(5, 5),
            strides=1,
            activation="relu",
            input_shape=(28, 28, 1),
        )
    )
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(
        Conv2D(
            filters=10,
            kernel_size=(5, 5),
            strides=1,
            activation="relu",
            input_shape=(23, 23, 4),
        )
    )
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(100, activation="relu"))
    model.add(Dense(10, activation="softmax"))

    model.compile(
        loss=tf.keras.losses.sparse_categorical_crossentropy,
        optimizer=tf.keras.optimizers.Adam(lr=0.003),
        metrics=["accuracy"],
    )
    return model 
開發者ID:twosixlabs,項目名稱:armory,代碼行數:34,代碼來源:mnist.py

示例11: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def __init__(self,
                 pool_size,
                 strides,
                 padding=0,
                 ceil_mode=False,
                 data_format="channels_last",
                 **kwargs):
        super(MaxPool2d, self).__init__(**kwargs)
        if isinstance(pool_size, int):
            pool_size = (pool_size, pool_size)
        if isinstance(strides, int):
            strides = (strides, strides)
        if isinstance(padding, int):
            padding = (padding, padding)

        self.use_stride = (strides[0] > 1) or (strides[1] > 1)
        self.ceil_mode = ceil_mode and self.use_stride
        self.use_pad = (padding[0] > 0) or (padding[1] > 0)

        if self.ceil_mode:
            self.padding = padding
            self.pool_size = pool_size
            self.strides = strides
            self.data_format = data_format
        elif self.use_pad:
            if is_channels_first(data_format):
                self.paddings_tf = [[0, 0], [0, 0], [padding[0]] * 2, [padding[1]] * 2]
            else:
                self.paddings_tf = [[0, 0], [padding[0]] * 2, [padding[1]] * 2, [0, 0]]

        self.pool = nn.MaxPooling2D(
            pool_size=pool_size,
            strides=strides,
            padding="valid",
            data_format=data_format) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:37,代碼來源:common.py

示例12: make_layers

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def make_layers(cfg,
                    inputs, 
                    batch_norm=True, 
                    in_channels=1):
        """Helper function to ease the creation of VGG
            network model

        Arguments:
            cfg (dict): Summarizes the network layer 
                configuration
            inputs (tensor): Input from previous layer
            batch_norm (Bool): Whether to use batch norm
                between Conv2D and ReLU
            in_channel (int): Number of input channels
        """
        x = inputs
        for layer in cfg:
            if layer == 'M':
                x = MaxPooling2D()(x)
            elif layer == 'A':
                x = AveragePooling2D(pool_size=3)(x)
            else:
                x = Conv2D(layer,
                           kernel_size=3,
                           padding='same',
                           kernel_initializer='he_normal'
                           )(x)
                if batch_norm:
                    x = BatchNormalization()(x)
                x = Activation('relu')(x)
    
        return x 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:34,代碼來源:vgg.py

示例13: get_model_meta

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def get_model_meta(filename):
    print("Loading model " + filename)
    global use_tf_keras
    global Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K
    try:
        from keras.models import load_model as load_model_keras
        ret = get_model_meta_real(filename, load_model_keras)
        # model is successfully loaded. Import layers from keras
        from keras.models import Sequential
        from keras.layers import Input, Dense, Dropout, Activation, Flatten, Lambda
        from keras.layers import Conv2D, MaxPooling2D
        from keras.layers import LeakyReLU
        from keras import regularizers
        from keras import backend as K
        print("Model imported using keras")
    except (KeyboardInterrupt, SystemExit, SyntaxError, NameError, IndentationError):
        raise
    except:
        print("Failed to load model with keras. Trying tf.keras...")
        use_tf_keras = True
        from tensorflow.keras.models import load_model as load_model_tf
        ret = get_model_meta_real(filename, load_model_tf)
        # model is successfully loaded. Import layers from tensorflow.keras
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Input, Dense, Dropout, Activation, Flatten, Lambda
        from tensorflow.keras.layers import Conv2D, MaxPooling2D
        from tensorflow.keras.layers import LeakyReLU
        from tensorflow.keras import regularizers
        from tensorflow.keras import backend as K
        print("Model imported using tensorflow.keras")
    # put imported functions in global
    Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K = \
        Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K
    return ret 
開發者ID:huanzhang12,項目名稱:CROWN-IBP,代碼行數:36,代碼來源:mnist_cifar_models.py

示例14: create_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def create_model(config):
    import tensorflow as tf
    model = Sequential()
    model.add(Conv2D(32, (3, 3), padding="same", input_shape=input_shape))
    model.add(Activation("relu"))
    model.add(Conv2D(32, (3, 3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(64, (3, 3), padding="same"))
    model.add(Activation("relu"))
    model.add(Conv2D(64, (3, 3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(64))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    # initiate RMSprop optimizer
    opt = tf.keras.optimizers.RMSprop(lr=0.001, decay=1e-6)

    # Let"s train the model using RMSprop
    model.compile(
        loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
    return model 
開發者ID:ray-project,項目名稱:ray,代碼行數:33,代碼來源:cifar_tf_example.py

示例15: contracting_layer_2D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPooling2D [as 別名]
def contracting_layer_2D(input, neurons, ba_norm, ba_norm_momentum):
    conv1 = Conv2D(neurons, (3,3), activation='relu', padding='same')(input)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conc1 = concatenate([input, conv1], axis=-1)
    conv2 = Conv2D(neurons, (3,3), activation='relu', padding='same')(conc1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc2 = concatenate([input, conv2], axis=-1)
    pool = MaxPooling2D(pool_size=(2, 2))(conc2)
    return pool, conc2

# Create the middle layer between the contracting and expanding layers 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:13,代碼來源:dense.py


注:本文中的tensorflow.keras.layers.MaxPooling2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。