當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.MaxPool2D方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.MaxPool2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.MaxPool2D方法的具體用法?Python layers.MaxPool2D怎麽用?Python layers.MaxPool2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.MaxPool2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_and_append_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def create_and_append_layer(self, layer, list_to_append_layer_to, activation=None, output_layer=False):
        """Creates and appends a layer to the list provided"""
        layer_name = layer[0].lower()
        assert layer_name in self.valid_cnn_hidden_layer_types, "Layer name {} not valid, use one of {}".format(
            layer_name, self.valid_cnn_hidden_layer_types)
        if layer_name == "conv":
            list_to_append_layer_to.extend([Conv2D(filters=layer[1], kernel_size=layer[2],
                                                strides=layer[3], padding=layer[4], activation=activation,
                                                   kernel_initializer=self.initialiser_function)])
        elif layer_name == "maxpool":
            list_to_append_layer_to.extend([MaxPool2D(pool_size=(layer[1], layer[1]),
                                                   strides=(layer[2], layer[2]), padding=layer[3])])
        elif layer_name == "avgpool":
            list_to_append_layer_to.extend([AveragePooling2D(pool_size=(layer[1], layer[1]),
                                                   strides=(layer[2], layer[2]), padding=layer[3])])
        elif layer_name == "linear":
            list_to_append_layer_to.extend([Dense(layer[1], activation=activation, kernel_initializer=self.initialiser_function)])
        else:
            raise ValueError("Wrong layer name") 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:21,代碼來源:CNN.py

示例2: residual_block_id

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def residual_block_id(self,tensor, feature_n,name=None):
        if name != None:
            depconv_1  = DepthwiseConv2D(3,2,padding='same',name=name+"/dconv")(tensor)
            conv_2     = Conv2D(feature_n,1,name=name+"/conv")(depconv_1)
        else:
            depconv_1  = DepthwiseConv2D(3,2,padding='same')(tensor)
            conv_2     = Conv2D(feature_n,1)(depconv_1)


        maxpool_1  = MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')(tensor)
        conv_zeros = Conv2D(feature_n/2,2,strides=2,use_bias=False,kernel_initializer=tf.zeros_initializer())(tensor)

        padding_1  = Concatenate(axis=-1)([maxpool_1,conv_zeros])#self.feature_padding(maxpool_1)

        add = Add()([padding_1,conv_2])
        relu = ReLU()(add)

        return relu
    
    #def feature_padding(self,tensor,channels_n=0):
    #    #pad = tf.keras.layers.ZeroPadding2D(((0,0),(0,0),(0,tensor.shape[3])))(tensor)
    #    return Concatenate(axis=3)([tensor,pad]) 
開發者ID:SBoulanger,項目名稱:blazepalm,代碼行數:24,代碼來源:palm_detector.py

示例3: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 body_class=ResBlock,
                 return_down=False,
                 data_format="channels_last",
                 **kwargs):
        super(DLAResBlock, self).__init__(**kwargs)
        self.return_down = return_down
        self.downsample = (strides > 1)
        self.project = (in_channels != out_channels)

        self.body = body_class(
            in_channels=in_channels,
            out_channels=out_channels,
            strides=strides,
            data_format=data_format,
            name="body")
        self.activ = nn.ReLU()
        if self.downsample:
            self.downsample_pool = nn.MaxPool2D(
                pool_size=strides,
                strides=strides,
                data_format=data_format,
                name="downsample_pool")
        if self.project:
            self.project_conv = conv1x1_block(
                in_channels=in_channels,
                out_channels=out_channels,
                activation=None,
                data_format=data_format,
                name="project_conv") 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:35,代碼來源:dla.py

示例4: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self, layers_info, output_activation=None, hidden_activations="relu", dropout= 0.0, initialiser="default",
                 batch_norm=False, y_range=(), random_seed=0, input_dim=None):
        Model.__init__(self)
        self.valid_cnn_hidden_layer_types = {'conv', 'maxpool', 'avgpool', 'linear'}
        self.valid_layer_types_with_no_parameters = (MaxPool2D, AveragePooling2D)
        Base_Network.__init__(self, layers_info, output_activation, hidden_activations, dropout, initialiser,
                              batch_norm, y_range, random_seed, input_dim) 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:9,代碼來源:CNN.py

示例5: encode

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def encode(filters, pool=False, norm=True):
    """downsample sequential model."""
    net = Seq()
    net.add(
        layers.Conv2D(
            filters, 3, strides=2, padding="same", kernel_initializer="he_normal"
        )
    )
    if pool:
        net.add(layers.MaxPool2D(pool_size=(2, 2)))
    if norm:
        net.add(layers.BatchNormalization())
    net.add(layers.ReLU())
    return net 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:16,代碼來源:custom_unet.py

示例6: _hourglass_module

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def _hourglass_module(input, stage_index, number_of_keypoints):
    if stage_index == 0:
        return _inverted_bottleneck(input, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3), []
    else:
        # down sample
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='SAME')(input)

        # block front
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)

        stage_index -= 1

        # block middle
        x, middle_layers = _hourglass_module(x, stage_index=stage_index, number_of_keypoints=number_of_keypoints)

        # block back
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=number_of_keypoints, is_subsample=False, kernel_size=3)

        # up sample
        upsampling_size = (2, 2)  # (x.shape[1] * 2, x.shape[2] * 2)
        x = layers.UpSampling2D(size=upsampling_size, interpolation='bilinear')(x)
        upsampling_layer = x

        # jump layer
        x = _inverted_bottleneck(input, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=number_of_keypoints, is_subsample=False, kernel_size=3)
        jump_branch_layer = x

        # add
        x = upsampling_layer + jump_branch_layer

        middle_layers.append(x)

        return x, middle_layers 
開發者ID:tucan9389,項目名稱:tf2-mobile-pose-estimation,代碼行數:43,代碼來源:mv2_hourglass.py

示例7: keras_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def keras_model():
    from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, Input

    inputs = Input(shape=(28, 28, 1))
    x = Conv2D(32, (3, 3),activation='relu', padding='valid')(inputs)
    x = MaxPool2D(pool_size=(2, 2))(x)
    x = Conv2D(64, (3, 3), activation='relu')(x)
    x = MaxPool2D(pool_size=(2, 2))(x)
    x = Flatten()(x)
    x = Dense(512, activation='relu')(x)
    x = Dropout(0.5)(x)
    outputs = Dense(_NUM_CLASSES, activation='softmax')(x)

    return tf.keras.Model(inputs, outputs) 
開發者ID:PipelineAI,項目名稱:models,代碼行數:16,代碼來源:pipeline_train.py

示例8: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self, compression_factor=0.5, pool_size=2, **kwargs):
        # super(TransitionDown, self).__init__(self, **kwargs)
        self.concat = Concatenate()
        self.compression_factor = compression_factor
        self.pool = layers.MaxPool2D(pool_size) 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:7,代碼來源:densenet.py

示例9: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self, filters, n_downsample, bottleneck_factor=2):
        self.filters = filters
        self.bottleneck_factor = bottleneck_factor
        n_downsample = n_downsample - 1
        self.n_downsample = int(np.maximum(0, n_downsample))

        self.conv_7x7 = Conv2D(
            filters,
            (7, 7),
            strides=(2, 2),
            padding="same",
            activation="relu",
            use_bias=False,
        )

        self.res_blocks = []
        self.pool_layers = []
        for idx in range(n_downsample):
            res_block = ResidualBlock(filters, bottleneck_factor)
            max_pool = MaxPool2D(pool_size=(2, 2), strides=(2, 2))
            self.res_blocks.append(res_block)
            self.pool_layers.append(max_pool)

        self.res_output = [
            ResidualBlock(filters, bottleneck_factor),
            ResidualBlock(filters, bottleneck_factor),
        ] 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:29,代碼來源:hourglass.py

示例10: down_module

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def down_module(inputs, out1, out2):
    x = layers.MaxPool2D(2, 2)(inputs)
    x = res_layer0(x, out1)
    out = res_layer1(x, out2)
    return out 
開發者ID:1044197988,項目名稱:Centernet-Tensorflow2.0,代碼行數:7,代碼來源:module.py

示例11: base_module

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def base_module(inputs, outchannels):
    x = layers.Conv2D(128, 7, strides=2, padding="same")(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.MaxPool2D(2, strides=2)(x)
    out = res_layer1(x, outchannels)
    return out 
開發者ID:1044197988,項目名稱:Centernet-Tensorflow2.0,代碼行數:8,代碼來源:module.py

示例12: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self, num_classes, first_channel=24, channels_per_stage=(132, 264, 528)):
        super(ShuffleNetv2, self).__init__(name="ShuffleNetv2")

        self.num_classes = num_classes

        self.conv1_bn_relu = Conv2D_BN_ReLU(first_channel, 3, 2)
        self.pool1 = MaxPool2D(3, strides=2, padding="SAME")
        self.stage2 = ShufflenetStage(first_channel, channels_per_stage[0], 4)
        self.stage3 = ShufflenetStage(channels_per_stage[0], channels_per_stage[1], 8)
        self.stage4 = ShufflenetStage(channels_per_stage[1], channels_per_stage[2], 4)
        #self.conv5_bn_relu = Conv2D_BN_ReLU(1024, 1, 1)
        self.gap = GlobalAveragePooling2D()
        self.linear = Dense(num_classes) 
開發者ID:hereszsz,項目名稱:thundernet-tensorflow2.0,代碼行數:15,代碼來源:layers.py

示例13: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def __init__(self,rgb_mean=None,
                 **kwargs):
        super(DexiNed, self).__init__(**kwargs)
        self.rgbn_mean = rgb_mean
        self.block_1 = DoubleConvBlock(32, 64, stride=(2,2),use_act=False)
        self.block_2 = DoubleConvBlock(128,use_act=False)
        self.dblock_3 = _DenseBlock(2, 256)
        self.dblock_4 = _DenseBlock(3, 512)
        self.dblock_5 = _DenseBlock(3, 512)
        self.dblock_6 = _DenseBlock(3, 256)
        self.maxpool = layers.MaxPool2D(pool_size=(3, 3), strides=2, padding='same')

        # first skip connection
        self.side_1 = SingleConvBlock(128,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_2 = SingleConvBlock(256,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_3 = SingleConvBlock(512,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_4 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        # self.side_5 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
        #                               w_init=weight_init)


        self.pre_dense_2 = SingleConvBlock(256,k_size=(1,1),stride=(2,2),
                                      w_init=weight_init) # use_bn=True
        self.pre_dense_3 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        self.pre_dense_4 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        self.pre_dense_5_0 = SingleConvBlock(512, k_size=(1,1),stride=(2,2),
                                      w_init=weight_init) # use_bn=True
        self.pre_dense_5 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        self.pre_dense_6 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)

        self.up_block_1 = UpConvBlock(1)
        self.up_block_2 = UpConvBlock(1)
        self.up_block_3 = UpConvBlock(2)
        self.up_block_4 = UpConvBlock(3)
        self.up_block_5 = UpConvBlock(4)
        self.up_block_6 = UpConvBlock(4)

        self.block_cat = SingleConvBlock(
            1,k_size=(1,1),stride=(1,1),
            w_init=tf.constant_initializer(1/5)) 
開發者ID:xavysp,項目名稱:DexiNed,代碼行數:50,代碼來源:model.py

示例14: _build_layer_components

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def _build_layer_components(self):
    """Builds the layers components and set _layers attribute."""
    self.max_pool1 = MaxPool2D(pool_size=(3, 3), strides=2, padding="valid")

    self.conv_block1 = [
        Conv2D(
            int(self.num_filters * 1.5),
            kernel_size=(3, 3),
            strides=2,
            padding="valid",
            activation=tf.nn.relu)
    ]

    self.conv_block2 = [
        Conv2D(
            filters=self.num_filters,
            kernel_size=1,
            strides=1,
            activation=tf.nn.relu,
            padding="same")
    ]
    self.conv_block2.append(
        Conv2D(
            filters=self.num_filters,
            kernel_size=3,
            strides=1,
            activation=tf.nn.relu,
            padding="same"))
    self.conv_block2.append(
        Conv2D(
            filters=int(self.num_filters * 1.5),
            kernel_size=3,
            strides=2,
            activation=tf.nn.relu,
            padding="valid"))

    self.concat_layer = Concatenate()
    self.activation_layer = ReLU()

    self._layers = self.conv_block1 + self.conv_block2
    self._layers.extend(
        [self.max_pool1, self.concat_layer, self.activation_layer]) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:44,代碼來源:chemnet_layers.py

示例15: build_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import MaxPool2D [as 別名]
def build_model(num_classes, image_width=None, channels=1):
    """
    build CNN-RNN model
    """
    def vgg_style(input_tensor):
        """
        The original feature extraction structure from CRNN paper.
        Related paper: https://ieeexplore.ieee.org/abstract/document/7801919
        """
        x = layers.Conv2D(
            filters=64, 
            kernel_size=3, 
            padding='same',
            activation='relu')(input_tensor)
        x = layers.MaxPool2D(pool_size=2, padding='same')(x)

        x = layers.Conv2D(
            filters=128, 
            kernel_size=3, 
            padding='same',
            activation='relu')(x)
        x = layers.MaxPool2D(pool_size=2, padding='same')(x)

        x = layers.Conv2D(filters=256, kernel_size=3, padding='same')(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        x = layers.Conv2D(filters=256, kernel_size=3, padding='same',
                          activation='relu')(x)
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 1), 
                             padding='same')(x)

        x = layers.Conv2D(filters=512, kernel_size=3, padding='same')(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        x = layers.Conv2D(filters=512, kernel_size=3, padding='same',
                          activation='relu')(x)
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 1), 
                             padding='same')(x)

        x = layers.Conv2D(filters=512, kernel_size=2)(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        return x

    img_input = keras.Input(shape=(32, image_width, channels))
    x = vgg_style(img_input)
    x = layers.Reshape((-1, 512))(x)

    x = layers.Bidirectional(layers.LSTM(units=256, return_sequences=True))(x)
    x = layers.Bidirectional(layers.LSTM(units=256, return_sequences=True))(x)
    x = layers.Dense(units=num_classes)(x)
    return keras.Model(inputs=img_input, outputs=x, name='CRNN') 
開發者ID:FLming,項目名稱:CRNN.tf2,代碼行數:54,代碼來源:model.py


注:本文中的tensorflow.keras.layers.MaxPool2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。