當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.GlobalAveragePooling1D方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.GlobalAveragePooling1D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.GlobalAveragePooling1D方法的具體用法?Python layers.GlobalAveragePooling1D怎麽用?Python layers.GlobalAveragePooling1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.GlobalAveragePooling1D方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: keras_estimator

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import GlobalAveragePooling1D [as 別名]
def keras_estimator(model_dir, config, learning_rate, vocab_size):
  """Creates a Keras Sequential model with layers.

  Args:
    model_dir: (str) file path where training files will be written.
    config: (tf.estimator.RunConfig) Configuration options to save model.
    learning_rate: (int) Learning rate.
    vocab_size: (int) Size of the vocabulary in number of words.

  Returns:
      A keras.Model
  """
  model = models.Sequential()
  model.add(Embedding(vocab_size, 16))
  model.add(GlobalAveragePooling1D())
  model.add(Dense(16, activation=tf.nn.relu))
  model.add(Dense(1, activation=tf.nn.sigmoid))

  # Compile model with learning parameters.
  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  model.compile(
      optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
  estimator = tf.keras.estimator.model_to_estimator(
      keras_model=model, model_dir=model_dir, config=config)
  return estimator 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:27,代碼來源:model.py

示例2: _build_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import GlobalAveragePooling1D [as 別名]
def _build_model(self):
        model = keras.Sequential([
            layers.Embedding(self.encoder.vocab_size, self.embedding_dim),
            layers.GlobalAveragePooling1D(),
            layers.Dense(16, activation='relu'),
            layers.Dense(1)
        ])
        model.compile(optimizer='adam',
                      loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                      metrics=['accuracy'])
        model.summary()
        return model 
開發者ID:msgi,項目名稱:nlp-journey,代碼行數:14,代碼來源:embedding.py


注:本文中的tensorflow.keras.layers.GlobalAveragePooling1D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。