本文整理匯總了Python中tensorflow.keras.layers.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dense方法的具體用法?Python layers.Dense怎麽用?Python layers.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.Dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_encoder
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def _create_encoder(self, n_layers, dropout):
"""Create the encoder as a tf.keras.Model."""
input = self._create_features()
gather_indices = Input(shape=(2,), dtype=tf.int32)
prev_layer = input
for i in range(len(self._filter_sizes)):
filter_size = self._filter_sizes[i]
kernel_size = self._kernel_sizes[i]
if dropout > 0.0:
prev_layer = Dropout(rate=dropout)(prev_layer)
prev_layer = Conv1D(
filters=filter_size, kernel_size=kernel_size,
activation=tf.nn.relu)(prev_layer)
prev_layer = Flatten()(prev_layer)
prev_layer = Dense(
self._decoder_dimension, activation=tf.nn.relu)(prev_layer)
prev_layer = BatchNormalization()(prev_layer)
return tf.keras.Model(inputs=[input, gather_indices], outputs=prev_layer)
示例2: create_keras_multiclass_classifier
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def create_keras_multiclass_classifier(X, y):
batch_size = 128
epochs = 12
num_classes = len(np.unique(y))
model = _common_model_generator(X.shape[1], num_classes)
model.add(Dense(units=num_classes, activation=Activation("softmax")))
model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=["accuracy"],
)
y_train = keras.utils.to_categorical(y, num_classes)
model.fit(
X,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X, y_train),
)
return model
示例3: _get_vocab_embedding_as_np_array
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def _get_vocab_embedding_as_np_array(self, vocab_type: VocabType) -> np.ndarray:
assert vocab_type in VocabType
vocab_type_to_embedding_layer_mapping = {
VocabType.Target: 'target_index',
VocabType.Token: 'token_embedding',
VocabType.Path: 'path_embedding'
}
embedding_layer_name = vocab_type_to_embedding_layer_mapping[vocab_type]
weight = np.array(self.keras_train_model.get_layer(embedding_layer_name).get_weights()[0])
assert len(weight.shape) == 2
# token, path have an actual `Embedding` layers, but target have just a `Dense` layer.
# hence, transpose the weight when necessary.
assert self.vocabs.get(vocab_type).size in weight.shape
if self.vocabs.get(vocab_type).size != weight.shape[0]:
weight = np.transpose(weight)
return weight
示例4: keras_estimator
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def keras_estimator(model_dir, config, learning_rate, vocab_size):
"""Creates a Keras Sequential model with layers.
Args:
model_dir: (str) file path where training files will be written.
config: (tf.estimator.RunConfig) Configuration options to save model.
learning_rate: (int) Learning rate.
vocab_size: (int) Size of the vocabulary in number of words.
Returns:
A keras.Model
"""
model = models.Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, activation=tf.nn.relu))
model.add(Dense(1, activation=tf.nn.sigmoid))
# Compile model with learning parameters.
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
model.compile(
optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
estimator = tf.keras.estimator.model_to_estimator(
keras_model=model, model_dir=model_dir, config=config)
return estimator
示例5: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self,
in_feats,
out_feats,
aggregator_type,
feat_drop=0.,
bias=True,
norm=None,
activation=None):
super(SAGEConv, self).__init__()
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._out_feats = out_feats
self._aggre_type = aggregator_type
self.norm = norm
self.feat_drop = layers.Dropout(feat_drop)
self.activation = activation
# aggregator type: mean/pool/lstm/gcn
if aggregator_type == 'pool':
self.fc_pool = layers.Dense(self._in_src_feats)
if aggregator_type == 'lstm':
self.lstm = layers.LSTM(units=self._in_src_feats)
if aggregator_type != 'gcn':
self.fc_self = layers.Dense(out_feats, use_bias=bias)
self.fc_neigh = layers.Dense(out_feats, use_bias=bias)
示例6: test_gin_conv
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_gin_conv(aggregator_type):
g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
gin = nn.GINConv(
tf.keras.layers.Dense(12),
aggregator_type
)
feat = F.randn((100, 5))
gin = gin
h = gin(g, feat)
assert h.shape == (100, 12)
g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
gin = nn.GINConv(
tf.keras.layers.Dense(12),
aggregator_type
)
feat = (F.randn((100, 5)), F.randn((200, 5)))
h = gin(g, feat)
assert h.shape == (200, 12)
示例7: build
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def build(self, input_shape):
super().build(input_shape)
layer_kwargs = dict(
kernel_initializer=self.kernel_initializer,
bias_initializer=self.bias_initializer,
kernel_regularizer=self.kernel_regularizer,
bias_regularizer=self.bias_regularizer,
kernel_constraint=self.kernel_constraint,
bias_constraint=self.bias_constraint
)
self.features_layer = Dense(self.channels,
name='features_layer',
**layer_kwargs)
self.attention_layer = Dense(self.channels,
activation='sigmoid',
name='attn_layer',
**layer_kwargs)
self.built = True
示例8: build
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def build(self, input_shape):
assert len(input_shape) >= 2
layer_kwargs = dict(
kernel_initializer=self.kernel_initializer,
bias_initializer=self.bias_initializer,
kernel_regularizer=self.kernel_regularizer,
bias_regularizer=self.bias_regularizer,
kernel_constraint=self.kernel_constraint,
bias_constraint=self.bias_constraint
)
self.mlp = Sequential([
Dense(channels, self.mlp_activation, **layer_kwargs)
for channels in self.mlp_hidden
] + [Dense(self.channels, self.activation, use_bias=self.use_bias, **layer_kwargs)])
self.built = True
示例9: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, filters, size=3, apply_batchnorm=True):
super(SFL, self).__init__()
self.apply_batchnorm = apply_batchnorm
# depth map
self.cru1 = CRU(filters, size, stride=1)
self.conv1 = Conv(2, size, activation=False, apply_batchnorm=False)
# class
self.conv2 = Downsample(filters*1, size)
self.conv3 = Downsample(filters*1, size)
self.conv4 = Downsample(filters*2, size)
self.conv5 = Downsample(filters*4, 4, padding='VALID')
self.flatten = layers.Flatten()
self.fc1 = Dense(256)
self.fc2 = Dense(1, activation=False, apply_batchnorm=False)
self.dropout = tf.keras.layers.Dropout(0.3)
示例10: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, state_shape, action_dim, units=[400, 300], name="Critic"):
super().__init__(name=name)
self.l1 = Dense(units[0], name="L1")
self.l2 = Dense(units[1], name="L2")
self.l3 = Dense(1, name="L3")
self.l4 = Dense(units[0], name="L4")
self.l5 = Dense(units[1], name="L5")
self.l6 = Dense(1, name="L6")
dummy_state = tf.constant(
np.zeros(shape=(1,)+state_shape, dtype=np.float32))
dummy_action = tf.constant(
np.zeros(shape=[1, action_dim], dtype=np.float32))
with tf.device("/cpu:0"):
self([dummy_state, dummy_action])
示例11: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, state_shape, action_dim, units=None,
name="QFunc", enable_dueling_dqn=False,
enable_noisy_dqn=False, enable_categorical_dqn=False,
n_atoms=51):
self._enable_dueling_dqn = enable_dueling_dqn
self._enable_noisy_dqn = enable_noisy_dqn
self._enable_categorical_dqn = enable_categorical_dqn
if enable_categorical_dqn:
self._action_dim = action_dim
self._n_atoms = n_atoms
action_dim = (action_dim + int(enable_dueling_dqn)) * n_atoms
# Build base layers
super().__init__(name, enable_noisy_dqn)
DenseLayer = NoisyDense if enable_noisy_dqn else Dense
self.fc2 = DenseLayer(action_dim, activation='linear')
if self._enable_dueling_dqn and not enable_categorical_dqn:
self.fc3 = DenseLayer(1, activation='linear')
input_shape = (1,) + state_shape
with tf.device("/cpu:0"):
self(inputs=tf.constant(np.zeros(shape=input_shape,
dtype=np.float32)))
示例12: test_single_continuous_dqn_input
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_single_continuous_dqn_input():
nb_actions = 2
V_model = Sequential()
V_model.add(Flatten(input_shape=(2, 3)))
V_model.add(Dense(1))
mu_model = Sequential()
mu_model.add(Flatten(input_shape=(2, 3)))
mu_model.add(Dense(nb_actions))
L_input = Input(shape=(2, 3))
L_input_action = Input(shape=(nb_actions,))
x = Concatenate()([Flatten()(L_input), L_input_action])
x = Dense(((nb_actions * nb_actions + nb_actions) // 2))(x)
L_model = Model(inputs=[L_input_action, L_input], outputs=x)
memory = SequentialMemory(limit=10, window_length=2)
agent = NAFAgent(nb_actions=nb_actions, V_model=V_model, L_model=L_model, mu_model=mu_model,
memory=memory, nb_steps_warmup=5, batch_size=4)
agent.compile('sgd')
agent.fit(MultiInputTestEnv((3,)), nb_steps=10)
示例13: test_dqn
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_dqn():
env = TwoRoundDeterministicRewardEnv()
np.random.seed(123)
env.seed(123)
random.seed(123)
nb_actions = env.action_space.n
# Next, we build a very simple model.
model = Sequential()
model.add(Dense(16, input_shape=(1,)))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
memory = SequentialMemory(limit=1000, window_length=1)
policy = EpsGreedyQPolicy(eps=.1)
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
target_model_update=1e-1, policy=policy, enable_double_dqn=False)
dqn.compile(Adam(lr=1e-3))
dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
policy.eps = 0.
h = dqn.test(env, nb_episodes=20, visualize=False)
assert_allclose(np.mean(h.history['episode_reward']), 3.)
示例14: test_double_dqn
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_double_dqn():
env = TwoRoundDeterministicRewardEnv()
np.random.seed(123)
env.seed(123)
random.seed(123)
nb_actions = env.action_space.n
# Next, we build a very simple model.
model = Sequential()
model.add(Dense(16, input_shape=(1,)))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
memory = SequentialMemory(limit=1000, window_length=1)
policy = EpsGreedyQPolicy(eps=.1)
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
target_model_update=1e-1, policy=policy, enable_double_dqn=True)
dqn.compile(Adam(lr=1e-3))
dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
policy.eps = 0.
h = dqn.test(env, nb_episodes=20, visualize=False)
assert_allclose(np.mean(h.history['episode_reward']), 3.)
示例15: test_cem
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_cem():
env = TwoRoundDeterministicRewardEnv()
np.random.seed(123)
env.seed(123)
random.seed(123)
nb_actions = env.action_space.n
# Next, we build a very simple model.
model = Sequential()
model.add(Dense(16, input_shape=(1,)))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
memory = EpisodeParameterMemory(limit=1000, window_length=1)
dqn = CEMAgent(model=model, nb_actions=nb_actions, memory=memory)
dqn.compile()
dqn.fit(env, nb_steps=2000, visualize=False, verbose=1)
h = dqn.test(env, nb_episodes=20, visualize=False)
assert_allclose(np.mean(h.history['episode_reward']), 3.)