當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Dense方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dense方法的具體用法?Python layers.Dense怎麽用?Python layers.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_encoder

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def _create_encoder(self, n_layers, dropout):
    """Create the encoder as a tf.keras.Model."""
    input = self._create_features()
    gather_indices = Input(shape=(2,), dtype=tf.int32)
    prev_layer = input
    for i in range(len(self._filter_sizes)):
      filter_size = self._filter_sizes[i]
      kernel_size = self._kernel_sizes[i]
      if dropout > 0.0:
        prev_layer = Dropout(rate=dropout)(prev_layer)
      prev_layer = Conv1D(
          filters=filter_size, kernel_size=kernel_size,
          activation=tf.nn.relu)(prev_layer)
    prev_layer = Flatten()(prev_layer)
    prev_layer = Dense(
        self._decoder_dimension, activation=tf.nn.relu)(prev_layer)
    prev_layer = BatchNormalization()(prev_layer)
    return tf.keras.Model(inputs=[input, gather_indices], outputs=prev_layer) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:20,代碼來源:seqtoseq.py

示例2: create_keras_multiclass_classifier

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def create_keras_multiclass_classifier(X, y):
    batch_size = 128
    epochs = 12
    num_classes = len(np.unique(y))
    model = _common_model_generator(X.shape[1], num_classes)
    model.add(Dense(units=num_classes, activation=Activation("softmax")))
    model.compile(
        loss=keras.losses.categorical_crossentropy,
        optimizer=keras.optimizers.Adadelta(),
        metrics=["accuracy"],
    )
    y_train = keras.utils.to_categorical(y, num_classes)
    model.fit(
        X,
        y_train,
        batch_size=batch_size,
        epochs=epochs,
        verbose=1,
        validation_data=(X, y_train),
    )
    return model 
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:23,代碼來源:common_utils.py

示例3: _get_vocab_embedding_as_np_array

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def _get_vocab_embedding_as_np_array(self, vocab_type: VocabType) -> np.ndarray:
        assert vocab_type in VocabType

        vocab_type_to_embedding_layer_mapping = {
            VocabType.Target: 'target_index',
            VocabType.Token: 'token_embedding',
            VocabType.Path: 'path_embedding'
        }
        embedding_layer_name = vocab_type_to_embedding_layer_mapping[vocab_type]
        weight = np.array(self.keras_train_model.get_layer(embedding_layer_name).get_weights()[0])
        assert len(weight.shape) == 2

        # token, path have an actual `Embedding` layers, but target have just a `Dense` layer.
        # hence, transpose the weight when necessary.
        assert self.vocabs.get(vocab_type).size in weight.shape
        if self.vocabs.get(vocab_type).size != weight.shape[0]:
            weight = np.transpose(weight)

        return weight 
開發者ID:tech-srl,項目名稱:code2vec,代碼行數:21,代碼來源:keras_model.py

示例4: keras_estimator

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def keras_estimator(model_dir, config, learning_rate, vocab_size):
  """Creates a Keras Sequential model with layers.

  Args:
    model_dir: (str) file path where training files will be written.
    config: (tf.estimator.RunConfig) Configuration options to save model.
    learning_rate: (int) Learning rate.
    vocab_size: (int) Size of the vocabulary in number of words.

  Returns:
      A keras.Model
  """
  model = models.Sequential()
  model.add(Embedding(vocab_size, 16))
  model.add(GlobalAveragePooling1D())
  model.add(Dense(16, activation=tf.nn.relu))
  model.add(Dense(1, activation=tf.nn.sigmoid))

  # Compile model with learning parameters.
  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  model.compile(
      optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
  estimator = tf.keras.estimator.model_to_estimator(
      keras_model=model, model_dir=model_dir, config=config)
  return estimator 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:27,代碼來源:model.py

示例5: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self,
                 in_feats,
                 out_feats,
                 aggregator_type,
                 feat_drop=0.,
                 bias=True,
                 norm=None,
                 activation=None):
        super(SAGEConv, self).__init__()

        self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
        self._out_feats = out_feats
        self._aggre_type = aggregator_type
        self.norm = norm
        self.feat_drop = layers.Dropout(feat_drop)
        self.activation = activation
        # aggregator type: mean/pool/lstm/gcn
        if aggregator_type == 'pool':
            self.fc_pool = layers.Dense(self._in_src_feats)
        if aggregator_type == 'lstm':
            self.lstm = layers.LSTM(units=self._in_src_feats)
        if aggregator_type != 'gcn':
            self.fc_self = layers.Dense(out_feats, use_bias=bias)
        self.fc_neigh = layers.Dense(out_feats, use_bias=bias) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:26,代碼來源:sageconv.py

示例6: test_gin_conv

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_gin_conv(aggregator_type):
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = F.randn((100, 5))
    gin = gin
    h = gin(g, feat)
    assert h.shape == (100, 12)

    g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
    feat = (F.randn((100, 5)), F.randn((200, 5)))
    h = gin(g, feat)
    assert h.shape == (200, 12) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:21,代碼來源:test_nn.py

示例7: build

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def build(self, input_shape):
        super().build(input_shape)
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )
        self.features_layer = Dense(self.channels,
                                    name='features_layer',
                                    **layer_kwargs)
        self.attention_layer = Dense(self.channels,
                                     activation='sigmoid',
                                     name='attn_layer',
                                     **layer_kwargs)
        self.built = True 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:global_pool.py

示例8: build

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )

        self.mlp = Sequential([
            Dense(channels, self.mlp_activation, **layer_kwargs)
            for channels in self.mlp_hidden
        ] + [Dense(self.channels, self.activation, use_bias=self.use_bias, **layer_kwargs)])

        self.built = True 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:19,代碼來源:edge_conv.py

示例9: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, filters, size=3, apply_batchnorm=True):
        super(SFL, self).__init__()
        self.apply_batchnorm = apply_batchnorm
        # depth map
        self.cru1 = CRU(filters, size, stride=1)
        self.conv1 = Conv(2, size, activation=False, apply_batchnorm=False)

        # class
        self.conv2 = Downsample(filters*1, size)
        self.conv3 = Downsample(filters*1, size)
        self.conv4 = Downsample(filters*2, size)
        self.conv5 = Downsample(filters*4, 4, padding='VALID')
        self.flatten = layers.Flatten()
        self.fc1 = Dense(256)
        self.fc2 = Dense(1, activation=False, apply_batchnorm=False)

        self.dropout = tf.keras.layers.Dropout(0.3) 
開發者ID:yaojieliu,項目名稱:CVPR2019-DeepTreeLearningForZeroShotFaceAntispoofing,代碼行數:19,代碼來源:utils.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, state_shape, action_dim, units=[400, 300], name="Critic"):
        super().__init__(name=name)

        self.l1 = Dense(units[0], name="L1")
        self.l2 = Dense(units[1], name="L2")
        self.l3 = Dense(1, name="L3")

        self.l4 = Dense(units[0], name="L4")
        self.l5 = Dense(units[1], name="L5")
        self.l6 = Dense(1, name="L6")

        dummy_state = tf.constant(
            np.zeros(shape=(1,)+state_shape, dtype=np.float32))
        dummy_action = tf.constant(
            np.zeros(shape=[1, action_dim], dtype=np.float32))
        with tf.device("/cpu:0"):
            self([dummy_state, dummy_action]) 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:19,代碼來源:td3.py

示例11: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def __init__(self, state_shape, action_dim, units=None,
                 name="QFunc", enable_dueling_dqn=False,
                 enable_noisy_dqn=False, enable_categorical_dqn=False,
                 n_atoms=51):
        self._enable_dueling_dqn = enable_dueling_dqn
        self._enable_noisy_dqn = enable_noisy_dqn
        self._enable_categorical_dqn = enable_categorical_dqn
        if enable_categorical_dqn:
            self._action_dim = action_dim
            self._n_atoms = n_atoms
            action_dim = (action_dim + int(enable_dueling_dqn)) * n_atoms

        # Build base layers
        super().__init__(name, enable_noisy_dqn)
        DenseLayer = NoisyDense if enable_noisy_dqn else Dense

        self.fc2 = DenseLayer(action_dim, activation='linear')

        if self._enable_dueling_dqn and not enable_categorical_dqn:
            self.fc3 = DenseLayer(1, activation='linear')

        input_shape = (1,) + state_shape
        with tf.device("/cpu:0"):
            self(inputs=tf.constant(np.zeros(shape=input_shape,
                                             dtype=np.float32))) 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:27,代碼來源:atari_model.py

示例12: test_single_continuous_dqn_input

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_single_continuous_dqn_input():
    nb_actions = 2

    V_model = Sequential()
    V_model.add(Flatten(input_shape=(2, 3)))
    V_model.add(Dense(1))

    mu_model = Sequential()
    mu_model.add(Flatten(input_shape=(2, 3)))
    mu_model.add(Dense(nb_actions))

    L_input = Input(shape=(2, 3))
    L_input_action = Input(shape=(nb_actions,))
    x = Concatenate()([Flatten()(L_input), L_input_action])
    x = Dense(((nb_actions * nb_actions + nb_actions) // 2))(x)
    L_model = Model(inputs=[L_input_action, L_input], outputs=x)

    memory = SequentialMemory(limit=10, window_length=2)
    agent = NAFAgent(nb_actions=nb_actions, V_model=V_model, L_model=L_model, mu_model=mu_model,
                     memory=memory, nb_steps_warmup=5, batch_size=4)
    agent.compile('sgd')
    agent.fit(MultiInputTestEnv((3,)), nb_steps=10) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:24,代碼來源:test_dqn.py

示例13: test_dqn

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=False)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例14: test_double_dqn

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_double_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:26,代碼來源:test_discrete.py

示例15: test_cem

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Dense [as 別名]
def test_cem():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = EpisodeParameterMemory(limit=1000, window_length=1)
    dqn = CEMAgent(model=model, nb_actions=nb_actions, memory=memory)
    dqn.compile()

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=1)
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:23,代碼來源:test_discrete.py


注:本文中的tensorflow.keras.layers.Dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。