當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv3D方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.Conv3D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv3D方法的具體用法?Python layers.Conv3D怎麽用?Python layers.Conv3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Conv3D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: up_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def up_stage(inputs, skip, filters, kernel_size=3,
             activation="relu", padding="SAME"):
    up = UpSampling3D()(inputs)
    up = Conv3D(filters, 2, activation=activation, padding=padding)(up)
    up = GroupNormalization()(up)

    merge = concatenate([skip, up])
    merge = GroupNormalization()(merge)

    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(merge)
    conv = GroupNormalization()(conv)
    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    conv = SpatialDropout3D(0.5)(conv, training=True)

    return conv 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:20,代碼來源:dropout_vnet.py

示例2: down_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def down_stage(inputs, filters, kernel_size=3,
               activation="relu", padding="SAME"):
    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(inputs)
    conv = GroupNormalization()(conv)
    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    pool = MaxPooling3D()(conv)
    return conv, pool 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:12,代碼來源:dropout_vnet.py

示例3: end_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def end_stage(inputs, kernel_size=3, activation="relu", padding="SAME"):
    conv = Conv3D(1, kernel_size, activation=activation, padding="SAME")(inputs)
    conv = Conv3D(1, 1, activation="sigmoid")(conv)

    return conv 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:7,代碼來源:dropout_vnet.py

示例4: down_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def down_stage(inputs, filters, kernel_size=3,
             activation="relu", padding="SAME"):
    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(inputs)
    conv = GroupNormalization()(conv)
    conv = Conv3D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    pool = MaxPooling3D()(conv)
    return conv, pool 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:12,代碼來源:bayesian_vnet.py

示例5: create_model_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def create_model_3D(self, input_shape, n_labels=2):
        # Input layer
        inputs = Input(input_shape)
        # Start the CNN Model chain with adding the inputs as first tensor
        cnn_chain = inputs
        # Cache contracting normalized conv layers
        # for later copy & concatenate links
        contracting_convs = []

        # Contracting Layers
        for i in range(0, self.depth):
            neurons = self.n_filters * 2**i
            cnn_chain, last_conv = contracting_layer_3D(cnn_chain, neurons,
                                                        self.ba_norm,
                                                        self.ba_norm_momentum)
            contracting_convs.append(last_conv)

        # Middle Layer
        neurons = self.n_filters * 2**self.depth
        cnn_chain = middle_layer_3D(cnn_chain, neurons, self.ba_norm,
                                    self.ba_norm_momentum)

        # Expanding Layers
        for i in reversed(range(0, self.depth)):
            neurons = self.n_filters * 2**i
            cnn_chain = expanding_layer_3D(cnn_chain, neurons,
                                           contracting_convs[i], self.ba_norm,
                                           self.ba_norm_momentum)

        # Output Layer
        conv_out = Conv3D(n_labels, (1, 1, 1),
                   activation=self.activation)(cnn_chain)
        # Create Model with associated input and output layers
        model = Model(inputs=[inputs], outputs=[conv_out])
        # Return model
        return model

#-----------------------------------------------------#
#                   Subroutines 2D                    #
#-----------------------------------------------------#
# Create a contracting layer 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:43,代碼來源:dense.py

示例6: contracting_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conc1 = concatenate([input, conv1], axis=-1)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conc1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc2 = concatenate([input, conv2], axis=-1)
    pool = MaxPooling3D(pool_size=(2, 2, 2))(conc2)
    return pool, conc2

# Create the middle layer between the contracting and expanding layers 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:13,代碼來源:dense.py

示例7: middle_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def middle_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)
    if ba_norm : conv_m1 = BatchNormalization(momentum=ba_norm_momentum)(conv_m1)
    conc1 = concatenate([input, conv_m1], axis=-1)
    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conc1)
    if ba_norm : conv_m2 = BatchNormalization(momentum=ba_norm_momentum)(conv_m2)
    conc2 = concatenate([input, conv_m2], axis=-1)
    return conc2

# Create an expanding layer 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:12,代碼來源:dense.py

示例8: expanding_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def expanding_layer_3D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv3DTranspose(neurons, (2, 2, 2), strides=(2, 2, 2),
                     padding='same')(input), concatenate_link], axis=4)
    conv1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conc1 = concatenate([up, conv1], axis=-1)
    conv2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conc1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc2 = concatenate([up, conv2], axis=-1)
    return conc2 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:13,代碼來源:dense.py

示例9: middle_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def middle_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)
    if ba_norm : conv_m1 = BatchNormalization(momentum=ba_norm_momentum)(conv_m1)
    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv_m1)
    if ba_norm : conv_m2 = BatchNormalization(momentum=ba_norm_momentum)(conv_m2)
    conc = concatenate([input, conv_m2], axis=-1)
    return conc

# Create an expanding layer 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:11,代碼來源:compact.py

示例10: expanding_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def expanding_layer_3D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv3DTranspose(neurons, (2, 2, 2), strides=(2, 2, 2),
                     padding='same')(input), concatenate_link], axis=4)
    conv1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc = concatenate([up, conv2], axis=-1)
    return conc 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:12,代碼來源:compact.py

示例11: contracting_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    shortcut = Conv3D(neurons, (1, 1, 1), activation='relu', padding="same")(input)
    add_layer = add([shortcut, conv2])
    pool = MaxPooling3D(pool_size=(2, 2, 2))(add_layer)
    return pool, add_layer

# Create the middle layer between the contracting and expanding layers 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:13,代碼來源:residual.py

示例12: middle_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def middle_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv_m1 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(input)
    if ba_norm : conv_m1 = BatchNormalization(momentum=ba_norm_momentum)(conv_m1)
    conv_m2 = Conv3D(neurons, (3, 3, 3), activation='relu', padding='same')(conv_m1)
    if ba_norm : conv_m2 = BatchNormalization(momentum=ba_norm_momentum)(conv_m2)
    shortcut = Conv3D(neurons, (1, 1, 1), activation='relu', padding="same")(input)
    add_layer = add([shortcut, conv_m2])
    return add_layer

# Create an expanding layer 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:12,代碼來源:residual.py

示例13: conv3d_bn

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def conv3d_bn(x, filters, num_row, num_col, num_z, padding='same', strides=(1, 1, 1), activation='relu', name=None):
    '''
    3D Convolutional layers

    Arguments:
        x {keras layer} -- input layer
        filters {int} -- number of filters
        num_row {int} -- number of rows in filters
        num_col {int} -- number of columns in filters
        num_z {int} -- length along z axis in filters
    Keyword Arguments:
        padding {str} -- mode of padding (default: {'same'})
        strides {tuple} -- stride of convolution operation (default: {(1, 1, 1)})
        activation {str} -- activation function (default: {'relu'})
        name {str} -- name of the layer (default: {None})

    Returns:
        [keras layer] -- [output layer]
    '''

    x = Conv3D(filters, (num_row, num_col, num_z), strides=strides, padding=padding, use_bias=False)(x)
    x = BatchNormalization(axis=4, scale=False)(x)

    if(activation==None):
        return x

    x = Activation(activation, name=name)(x)
    return x 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:30,代碼來源:multiRes.py

示例14: conv_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def conv_layer_3D(input, neurons, ba_norm, strides=1):
    conv = Conv3D(neurons, (3,3,3), activation='relu', padding='same',
                  strides=strides)(input)
    if ba_norm : conv = BatchNormalization(momentum=0.99)(conv)
    return conv 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:7,代碼來源:plain.py

示例15: contracting_layer_3D

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv3D [as 別名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    pool = MaxPooling3D(pool_size=(2, 2, 2))(conv2)
    return pool, conv2

# Create the middle layer between the contracting and expanding layers 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:11,代碼來源:standard.py


注:本文中的tensorflow.keras.layers.Conv3D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。