當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Conv2D方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.Conv2D方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Conv2D方法的具體用法?Python layers.Conv2D怎麽用?Python layers.Conv2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Conv2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def __init__(self, out_features,**kwargs):
        super(_DenseLayer, self).__init__(**kwargs)
        k_reg = None if w_decay is None else l2(w_decay)
        self.layers = []
        self.layers.append(tf.keras.Sequential(
            [
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                kernel_regularizer=k_reg),
                layers.BatchNormalization(),
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                    kernel_regularizer=k_reg),
                layers.BatchNormalization(),
            ])) # first relu can be not needed 
開發者ID:xavysp,項目名稱:DexiNed,代碼行數:21,代碼來源:model.py

示例2: conv2d_bn

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def conv2d_bn(x,
              filters,
              kernel_size,
              strides=1,
              padding='same',
              activation='relu',
              use_bias=False,
              name=None):
    x = Conv2D(filters,
               kernel_size,
               strides=strides,
               padding=padding,
               use_bias=use_bias,
               name=name)(x)
    if not use_bias:
        bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
        bn_name = _generate_layer_name('BatchNorm', prefix=name)
        x = BatchNormalization(axis=bn_axis, momentum=0.995, epsilon=0.001,
                               scale=False, name=bn_name)(x)
    if activation is not None:
        ac_name = _generate_layer_name('Activation', prefix=name)
        x = Activation(activation, name=ac_name)(x)
    return x 
開發者ID:aangfanboy,項目名稱:TripletLossFace,代碼行數:25,代碼來源:inception_resnet_v1.py

示例3: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def __init__(self, state_shape, action_dim, units=None,
                 name="AtariCategoricalActorCritic"):
        tf.keras.Model.__init__(self, name=name)
        self.dist = Categorical(dim=action_dim)
        self.action_dim = action_dim

        self.conv1 = Conv2D(32, kernel_size=(8, 8), strides=(4, 4),
                            padding='valid', activation='relu')
        self.conv2 = Conv2D(64, kernel_size=(4, 4), strides=(2, 2),
                            padding='valid', activation='relu')
        self.conv3 = Conv2D(64, kernel_size=(3, 3), strides=(1, 1),
                            padding='valid', activation='relu')
        self.flat = Flatten()
        self.fc1 = Dense(512, activation='relu')
        self.prob = Dense(action_dim, activation='softmax')
        self.v = Dense(1, activation="linear")

        self(tf.constant(
            np.zeros(shape=(1,)+state_shape, dtype=np.float32))) 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:21,代碼來源:atari_model.py

示例4: up_stage

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def up_stage(inputs, skip, filters, kernel_size=3,
             activation="relu", padding="SAME"):
    up = UpSampling2D()(inputs)
    up = Conv2D(filters, 2, activation=activation, padding=padding)(up)
    up = GroupNormalization()(up)

    merge = concatenate([skip, up])
    merge = GroupNormalization()(merge)

    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(merge)
    conv = GroupNormalization()(conv)
    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    conv = SpatialDropout2D(0.5)(conv, training=True)

    return conv 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:20,代碼來源:dropout_unet.py

示例5: spatial_squeeze_excite_block

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def spatial_squeeze_excite_block(input_tensor):
    """ Create a spatial squeeze-excite block

    Args:
        input_tensor: input Keras tensor

    Returns: a Keras tensor

    References
    -   [Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579)
    """

    se = Conv2D(1, (1, 1), activation='sigmoid', use_bias=False,
                kernel_initializer='he_normal')(input_tensor)

    x = multiply([input_tensor, se])
    return x 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:19,代碼來源:se.py

示例6: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def __init__(self,
                 data_format="channels_last",
                 **kwargs):
        super(TF2Model, self).__init__(**kwargs)

        padding = (3, 3)
        if isinstance(padding, int):
            padding = (padding, padding)
        if is_channels_first(data_format):
            self.paddings_tf = [[0, 0], [0, 0], list(padding), list(padding)]
        else:
            self.paddings_tf = [[0, 0], list(padding), list(padding), [0, 0]]
        self.conv = nn.Conv2D(
            filters=64,
            kernel_size=(7, 7),
            strides=2,
            padding="valid",
            data_format=data_format,
            dilation_rate=1,
            use_bias=False,
            name="conv") 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:23,代碼來源:convert_gl2tf2_conv2d.py

示例7: create_and_append_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def create_and_append_layer(self, layer, list_to_append_layer_to, activation=None, output_layer=False):
        """Creates and appends a layer to the list provided"""
        layer_name = layer[0].lower()
        assert layer_name in self.valid_cnn_hidden_layer_types, "Layer name {} not valid, use one of {}".format(
            layer_name, self.valid_cnn_hidden_layer_types)
        if layer_name == "conv":
            list_to_append_layer_to.extend([Conv2D(filters=layer[1], kernel_size=layer[2],
                                                strides=layer[3], padding=layer[4], activation=activation,
                                                   kernel_initializer=self.initialiser_function)])
        elif layer_name == "maxpool":
            list_to_append_layer_to.extend([MaxPool2D(pool_size=(layer[1], layer[1]),
                                                   strides=(layer[2], layer[2]), padding=layer[3])])
        elif layer_name == "avgpool":
            list_to_append_layer_to.extend([AveragePooling2D(pool_size=(layer[1], layer[1]),
                                                   strides=(layer[2], layer[2]), padding=layer[3])])
        elif layer_name == "linear":
            list_to_append_layer_to.extend([Dense(layer[1], activation=activation, kernel_initializer=self.initialiser_function)])
        else:
            raise ValueError("Wrong layer name") 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:21,代碼來源:CNN.py

示例8: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def __init__(self,
                 input_name: str = 'encoder_output',
                 output_name: str = 'contact_prob'):
        super().__init__()
        self._input_name = input_name
        self._output_name = output_name

        def concat_pairs(tensor):
            input_mul = tensor[:, :, None] * tensor[:, None, :]
            input_sub = tf.abs(tensor[:, :, None] - tensor[:, None, :])
            output = tf.concat((input_mul, input_sub), -1)
            return output

        self.get_pairwise_feature_vector = Lambda(concat_pairs)

        self.predict_contact_map = Stack()
        self.predict_contact_map.add(Conv2D(32, 1, use_bias=True, padding='same', activation='relu'))
        self.predict_contact_map.add(Conv2D(1, 7, use_bias=True, padding='same', activation='linear')) 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:20,代碼來源:BeplerContactPredictor.py

示例9: create_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def create_model(trainable=False):
    model = MobileNetV2(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, alpha=ALPHA)

    # to freeze layers
    for layer in model.layers:
        layer.trainable = trainable

    out = model.layers[-1].output

    x = Conv2D(4, kernel_size=3)(out)
    x = Reshape((4,), name="coords")(x)

    y = GlobalAveragePooling2D()(out)
    y = Dense(CLASSES, name="classes", activation="softmax")(y)

    return Model(inputs=model.input, outputs=[x, y]) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:18,代碼來源:train.py

示例10: create_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def create_model(trainable=False):
    model = MobileNetV2(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, alpha=ALPHA, weights="imagenet")

    for layer in model.layers:
        layer.trainable = trainable

    block = model.get_layer("block_16_project_BN").output

    x = Conv2D(112, padding="same", kernel_size=3, strides=1, activation="relu")(block)
    x = Conv2D(112, padding="same", kernel_size=3, strides=1, use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)

    x = Conv2D(5, padding="same", kernel_size=1, activation="sigmoid")(x)

    model = Model(inputs=model.input, outputs=x)

    # divide by 2 since d/dweight learning_rate * weight^2 = 2 * learning_rate * weight
    # see https://arxiv.org/pdf/1711.05101.pdf
    regularizer = l2(WEIGHT_DECAY / 2)
    for weight in model.trainable_weights:
        with tf.keras.backend.name_scope("weight_regularizer"):
            model.add_loss(regularizer(weight)) # in tf2.0: lambda: regularizer(weight)

    return model 
開發者ID:lars76,項目名稱:object-localization,代碼行數:27,代碼來源:train.py

示例11: _keras_conv2d_core

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def _keras_conv2d_core(shape=None, data=None):
    assert shape is None or data is None
    if shape is None:
        shape = data.shape

    init = tf.keras.initializers.RandomNormal(seed=1)

    model = Sequential()
    c2d = Conv2D(
        2,
        (3, 3),
        data_format="channels_last",
        use_bias=False,
        kernel_initializer=init,
        input_shape=shape[1:],
    )
    model.add(c2d)

    if data is None:
        data = np.random.uniform(size=shape)
    out = model.predict(data)
    return model, out 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:24,代碼來源:convert_test.py

示例12: conv_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def conv_layer(inputs,
               filters=32,
               kernel_size=3,
               strides=1,
               use_maxpool=True,
               postfix=None,
               activation=None):
    """Helper function to build Conv2D-BN-ReLU layer
        with optional MaxPooling2D.
    """

    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=strides,
               kernel_initializer='he_normal',
               name="conv_"+postfix,
               padding='same')(inputs)
    x = BatchNormalization(name="bn_"+postfix)(x)
    x = Activation('relu', name='relu_'+postfix)(x)
    if use_maxpool:
        x = MaxPooling2D(name='pool'+postfix)(x)
    return x 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:24,代碼來源:model.py

示例13: encoder_layer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def encoder_layer(inputs,
                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU

    """

    conv = Conv2D(filters=filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization()(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    return x 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:27,代碼來源:cyclegan-7.1.1.py

示例14: ConvLayer

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def ConvLayer(conv_function=Conv2D,
              filters=[32, 64, 64],
              kernels=[[8, 8], [4, 4], [3, 3]],
              strides=[[4, 4], [2, 2], [1, 1]],
              padding='valid',
              activation='relu'):
    '''
    Params:
        conv_function: the convolution function
        filters: list of flitter of all hidden conv layers
        kernels: list of kernel of all hidden conv layers
        strides: list of stride of all hidden conv layers
        padding: padding mode
        activation: activation function
    Return:
        A sequential of multi-convolution layers, with Flatten.
    '''
    layers = Sequential([conv_function(filters=f, kernel_size=k, strides=s, padding=padding, activation=activation) for f, k, s in zip(filters, kernels, strides)])
    layers.add(Flatten())
    return layers 
開發者ID:StepNeverStop,項目名稱:RLs,代碼行數:22,代碼來源:layers.py

示例15: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Conv2D [as 別名]
def __init__(self,
                 filters,  # NOTE: will be filters // 2
                 norm_type="instance",
                 pad_type="constant",
                 **kwargs):
        super(BasicShuffleUnitV2, self).__init__(name="BasicShuffleUnitV2")
        filters //= 2
        self.model = tf.keras.models.Sequential([
            Conv2D(filters, 1, use_bias=False),
            get_norm(norm_type),
            ReLU(),
            DepthwiseConv2D(3, padding='same', use_bias=False),
            get_norm(norm_type),
            Conv2D(filters, 1, use_bias=False),
            get_norm(norm_type),
            ReLU(),
        ]) 
開發者ID:mnicnc404,項目名稱:CartoonGan-tensorflow,代碼行數:19,代碼來源:layers.py


注:本文中的tensorflow.keras.layers.Conv2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。