當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Concatenate方法代碼示例

本文整理匯總了Python中tensorflow.keras.layers.Concatenate方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Concatenate方法的具體用法?Python layers.Concatenate怎麽用?Python layers.Concatenate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Concatenate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_single_ddpg_input

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def test_single_ddpg_input():
    nb_actions = 2

    actor = Sequential()
    actor.add(Flatten(input_shape=(2, 3)))
    actor.add(Dense(nb_actions))

    action_input = Input(shape=(nb_actions,), name='action_input')
    observation_input = Input(shape=(2, 3), name='observation_input')
    x = Concatenate()([action_input, Flatten()(observation_input)])
    x = Dense(1)(x)
    critic = Model(inputs=[action_input, observation_input], outputs=x)

    memory = SequentialMemory(limit=10, window_length=2)
    agent = DDPGAgent(actor=actor, critic=critic, critic_action_input=action_input, memory=memory,
                      nb_actions=2, nb_steps_warmup_critic=5, nb_steps_warmup_actor=5, batch_size=4)
    agent.compile('sgd')
    agent.fit(MultiInputTestEnv((3,)), nb_steps=10) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:20,代碼來源:test_ddpg.py

示例2: _build_q_NN

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def _build_q_NN(self):
        input_states = Input(shape=(self.observation_size,))
        input_action = Input(shape=(self.action_size,))
        input_layer = Concatenate()([input_states, input_action])
        
        lay1 = Dense(self.observation_size)(input_layer)
        lay1 = Activation('relu')(lay1)
        
        lay2 = Dense(self.observation_size)(lay1)
        lay2 = Activation('relu')(lay2)
        
        lay3 = Dense(2*self.action_size)(lay2)
        lay3 = Activation('relu')(lay3)
        
        advantage = Dense(1, activation = 'linear')(lay3)
        
        model = Model(inputs=[input_states, input_action], outputs=[advantage])
        model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
        
        return model 
開發者ID:rte-france,項目名稱:Grid2Op,代碼行數:22,代碼來源:ml_agent.py

示例3: incorporate_embeddings

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def incorporate_embeddings(self, x):
        """Puts relevant data through embedding layers and then concatenates the result with the rest of the data ready
        to then be put through the hidden layers"""
        all_embedded_data = []
        for embedding_layer_ix, embedding_var in enumerate(self.columns_of_data_to_be_embedded):
            data = x[:, embedding_var]
            embedded_data = self.embedding_layers[embedding_layer_ix](data)
            all_embedded_data.append(embedded_data)
        if len(all_embedded_data) > 1: all_embedded_data = Concatenate(axis=1)(all_embedded_data)
        else: all_embedded_data = all_embedded_data[0]
        non_embedded_columns = [col for col in range(x.shape[1]) if col not in self.columns_of_data_to_be_embedded]
        if len(non_embedded_columns) > 0:
            x = tf.gather(x, non_embedded_columns, axis=1)
            x = Concatenate(axis=1)([tf.dtypes.cast(x, float), all_embedded_data])
        else: x = all_embedded_data
        return x 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:18,代碼來源:NN.py

示例4: incorporate_embeddings

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def incorporate_embeddings(self, x):
        """Puts relevant data through embedding layers and then concatenates the result with the rest of the data ready
        to then be put through the hidden layers"""
        all_embedded_data = []
        for embedding_layer_ix, embedding_var in enumerate(self.columns_of_data_to_be_embedded):
            data = x[:, :, embedding_var]
            embedded_data = self.embedding_layers[embedding_layer_ix](data)
            all_embedded_data.append(embedded_data)
        if len(all_embedded_data) > 1: all_embedded_data = Concatenate(axis=2)(all_embedded_data)
        else: all_embedded_data = all_embedded_data[0]
        non_embedded_columns = [col for col in range(x.shape[2]) if col not in self.columns_of_data_to_be_embedded]
        if len(non_embedded_columns) > 0:
            x = tf.gather(x, non_embedded_columns, axis=2)
            x = Concatenate(axis=2)([tf.dtypes.cast(x, float), all_embedded_data])
        else: x = all_embedded_data
        return x 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:18,代碼來源:RNN.py

示例5: process_output_layers

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def process_output_layers(self, x, restricted_to_final_seq):
        """Puts the data x through all the output layers"""
        out = None
        for output_layer_ix, output_layer in enumerate(self.output_layers):
            if type(output_layer) == Dense:
                if self.return_final_seq_only and not restricted_to_final_seq:
                    x = x[:, -1, :]
                    restricted_to_final_seq = True
                temp_output = output_layer(x)
            else:
                temp_output = output_layer(x)
                activation = self.get_activation(self.output_activation, output_layer_ix)
                temp_output = activation(temp_output)
            if out is None: out = temp_output
            else:
                if restricted_to_final_seq: dim = 1
                else: dim = 2
                out = Concatenate(axis=dim)([out, temp_output])
        return out 
開發者ID:p-christ,項目名稱:nn_builder,代碼行數:21,代碼來源:RNN.py

示例6: load

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def load(input_shape, output_shape, cfg):
    nb_lstm_states = int(cfg['nb_lstm_states'])


    inputs = KL.Input(shape=input_shape)
    x = KL.CuDNNLSTM(units=nb_lstm_states, unit_forget_bias=True)(inputs)

    x = KL.Dense(512)(x)
    x = KL.Activation('relu')(x)
    x = KL.Dropout(0.2)(x)

    x = KL.Dense(256)(x)
    x = KL.Activation('relu')(x)
    x = KL.Dropout(0.3)(x)

    mu = KL.Dense(1)(x)
    std = KL.Dense(1)(x)
    activation_fn = get_activation_function_by_name(cfg['activation_function'])
    std = KL.Activation(activation_fn, name="exponential_activation")(std)

    output = KL.Concatenate(axis=-1)([std, mu])
    model = KM.Model(inputs=[inputs], outputs=[output])

    return model 
開發者ID:johnmartinsson,項目名稱:blood-glucose-prediction,代碼行數:26,代碼來源:lstm_experiment_keras.py

示例7: __init__

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def __init__(self, growth_rate=64, bottleneck_factor=1, **kwargs):
        # super(DenseConv2D, self).__init__(self, **kwargs)
        self.concat = Concatenate()

        bottleneck_filters = int(np.round(growth_rate * bottleneck_factor))

        self.bottleneck_1x1 = layers.Conv2D(
            bottleneck_filters,
            (1, 1),
            padding="same",
            activation="selu",
            kernel_initializer="lecun_normal",
        )
        self.conv_3x3 = layers.Conv2D(
            growth_rate,
            (3, 3),
            padding="same",
            activation="selu",
            kernel_initializer="lecun_normal",
        ) 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:22,代碼來源:densenet.py

示例8: call

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def call(self, inputs):
        conv_7x7 = self.conv_7x7(inputs)
        pooled_inputs = self.pool_input(inputs)
        outputs = [pooled_inputs, conv_7x7]
        residual_outputs = []
        for idx in range(self.n_downsample - 1):
            outputs = self.dense_conv[idx](outputs)
            concat_outputs = Concatenate()(outputs)
            outputs = [concat_outputs]

            # Pool each dense layer to match output size
            pooled_outputs = self.pooled_outputs[idx](outputs)
            residual_outputs.append(Concatenate()(pooled_outputs))

            outputs = self.transition_down[idx](outputs)

        outputs = self.dense_conv[-1](outputs)
        outputs = Concatenate()(outputs)
        residual_outputs.append(outputs)
        residual_outputs = [
            Compression(self.compression_factor)(res) for res in residual_outputs
        ]
        outputs = Concatenate()(residual_outputs)
        return [outputs] 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:26,代碼來源:densenet.py

示例9: build

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def build(self, hp, inputs=None):
        inputs = nest.flatten(inputs)
        if len(inputs) == 1:
            return inputs

        merge_type = self.merge_type or hp.Choice('merge_type',
                                                  ['add', 'concatenate'],
                                                  default='add')

        if not all([shape_compatible(input_node.shape, inputs[0].shape) for
                    input_node in inputs]):
            new_inputs = []
            for input_node in inputs:
                new_inputs.append(Flatten().build(hp, input_node))
            inputs = new_inputs

        # TODO: Even inputs have different shape[-1], they can still be Add(
        #  ) after another layer. Check if the inputs are all of the same
        #  shape
        if all([input_node.shape == inputs[0].shape for input_node in inputs]):
            if merge_type == 'add':
                return layers.Add(inputs)

        return layers.Concatenate()(inputs) 
開發者ID:keras-team,項目名稱:autokeras,代碼行數:26,代碼來源:reduction.py

示例10: yolo2_predictions

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def yolo2_predictions(feature_maps, feature_channel_nums, num_anchors, num_classes):
    f1, f2 = feature_maps
    f1_channel_num, f2_channel_num = feature_channel_nums

    x1 = compose(
        DarknetConv2D_BN_Leaky(f1_channel_num, (3, 3)),
        DarknetConv2D_BN_Leaky(f1_channel_num, (3, 3)))(f1)

    # Here change the f2 channel number to f2_channel_num//8 first,
    # then expand back to f2_channel_num//2 with "space_to_depth_x2"
    x2 = DarknetConv2D_BN_Leaky(f2_channel_num//8, (1, 1))(f2)
    # TODO: Allow Keras Lambda to use func arguments for output_shape?
    x2_reshaped = Lambda(
        space_to_depth_x2,
        output_shape=space_to_depth_x2_output_shape,
        name='space_to_depth')(x2)

    x = Concatenate()([x2_reshaped, x1])
    x = DarknetConv2D_BN_Leaky(f1_channel_num, (3, 3))(x)
    y = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x)

    return y 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:24,代碼來源:layers.py

示例11: resblock_body

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def resblock_body(x, num_filters, num_blocks, all_narrow=True):
    '''A series of resblocks starting with a downsampling Convolution2D'''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1,0),(1,0)))(x)
    x = DarknetConv2D_BN_Mish(num_filters, (3,3), strides=(2,2))(x)

    res_connection = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)
    x = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)

    for i in range(num_blocks):
        y = compose(
                DarknetConv2D_BN_Mish(num_filters//2, (1,1)),
                DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (3,3)))(x)
        x = Add()([x,y])

    x = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)
    x = Concatenate()([x , res_connection])

    return DarknetConv2D_BN_Mish(num_filters, (1,1))(x) 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:21,代碼來源:yolo4_darknet.py

示例12: residual_block_id

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def residual_block_id(self,tensor, feature_n,name=None):
        if name != None:
            depconv_1  = DepthwiseConv2D(3,2,padding='same',name=name+"/dconv")(tensor)
            conv_2     = Conv2D(feature_n,1,name=name+"/conv")(depconv_1)
        else:
            depconv_1  = DepthwiseConv2D(3,2,padding='same')(tensor)
            conv_2     = Conv2D(feature_n,1)(depconv_1)


        maxpool_1  = MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')(tensor)
        conv_zeros = Conv2D(feature_n/2,2,strides=2,use_bias=False,kernel_initializer=tf.zeros_initializer())(tensor)

        padding_1  = Concatenate(axis=-1)([maxpool_1,conv_zeros])#self.feature_padding(maxpool_1)

        add = Add()([padding_1,conv_2])
        relu = ReLU()(add)

        return relu
    
    #def feature_padding(self,tensor,channels_n=0):
    #    #pad = tf.keras.layers.ZeroPadding2D(((0,0),(0,0),(0,tensor.shape[3])))(tensor)
    #    return Concatenate(axis=3)([tensor,pad]) 
開發者ID:SBoulanger,項目名稱:blazepalm,代碼行數:24,代碼來源:palm_detector.py

示例13: call

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def call(self, x):
        x0_0 = self.conv0_0(x)
        x1_0 = self.conv1_0(self.pool(x0_0))
        x0_1 = self.conv0_1(Concatenate()([x0_0, self.Up(x1_0)]))

        x2_0 = self.conv2_0(self.pool(x1_0))
        x1_1 = self.conv1_1(Concatenate()([x1_0, self.Up(x2_0)]))
        x0_2 = self.conv0_2(Concatenate()([x0_0, x0_1, self.Up(x1_1)]))

        x3_0 = self.conv3_0(self.pool(x2_0))
        x2_1 = self.conv2_1(Concatenate()([x2_0, self.Up(x3_0)]))
        x1_2 = self.conv1_2(Concatenate()([x1_0, x1_1, self.Up(x2_1)]))
        x0_3 = self.conv0_3(Concatenate()([x0_0, x0_1, x0_2, self.Up(x1_2)]))

        x4_0 = self.conv4_0(self.pool(x3_0))
        x3_1 = self.conv3_1(Concatenate()([x3_0, self.Up(x4_0)]))
        x2_2 = self.conv2_2(Concatenate()([x2_0, x2_1, self.Up(x3_1)]))
        x1_3 = self.conv1_3(Concatenate()([x1_0, x1_1, x1_2, self.Up(x2_2)]))
        x0_4 = self.conv0_4(Concatenate()([x0_0, x0_1, x0_2, x0_3, self.Up(x1_3)]))

        output = self.final(x0_4)
        return output 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:24,代碼來源:Unet_family.py

示例14: create_discriminator

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def create_discriminator(self):
    data_input = Input(self.get_data_input_shapes()[0])
    conditional_input = Input(self.get_conditional_input_shapes()[0])
    inputs = [data_input, conditional_input]
    discrim_in = Concatenate(axis=1)(inputs)
    dense = Dense(10, activation=tf.nn.relu)(discrim_in)
    output = Dense(1, activation=tf.sigmoid)(dense)
    return tf.keras.Model(inputs=inputs, outputs=output) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:10,代碼來源:test_gan.py

示例15: test_clone_graph_model

# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import Concatenate [as 別名]
def test_clone_graph_model():
    in1 = Input(shape=(2,))
    in2 = Input(shape=(3,))
    x = Dense(8)(Concatenate()([in1, in2]))
    graph = Model([in1, in2], x)
    graph.compile(optimizer='sgd', loss='mse')

    clone = clone_model(graph)
    clone.compile(optimizer='sgd', loss='mse')

    ins = [np.random.random((4, 2)), np.random.random((4, 3))]
    y_pred_graph = graph.predict_on_batch(ins)
    y_pred_clone = clone.predict_on_batch(ins)
    assert y_pred_graph.shape == y_pred_clone.shape
    assert_allclose(y_pred_graph, y_pred_clone) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:17,代碼來源:test_util.py


注:本文中的tensorflow.keras.layers.Concatenate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。