當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.get方法代碼示例

本文整理匯總了Python中tensorflow.keras.initializers.get方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.get方法的具體用法?Python initializers.get怎麽用?Python initializers.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.initializers的用法示例。


在下文中一共展示了initializers.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def build(self, input_shape):
    self.W_list = []
    self.b_list = []
    init = initializers.get(self.init)
    prev_layer_size = self.n_embedding
    for i, layer_size in enumerate(self.layer_sizes):
      self.W_list.append(init([prev_layer_size, layer_size]))
      self.b_list.append(backend.zeros(shape=[
          layer_size,
      ]))
      prev_layer_size = layer_size
    self.W_list.append(init([prev_layer_size, self.n_outputs]))
    self.b_list.append(backend.zeros(shape=[
        self.n_outputs,
    ]))
    self.built = True 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:18,代碼來源:layers.py

示例2: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 ratio,
                 return_mask=False,
                 sigmoid_gating=False,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.ratio = ratio
        self.return_mask = return_mask
        self.sigmoid_gating = sigmoid_gating
        self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:18,代碼來源:topk_pool.py

示例3: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 channels,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.channels = channels
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:19,代碼來源:global_pool.py

示例4: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 k,
                 channels=None,
                 return_mask=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.channels = channels
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:diff_pool.py

示例5: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 channels,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(activity_regularizer=activity_regularizer, **kwargs)
        self.channels = channels
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = False 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:26,代碼來源:graph_conv.py

示例6: build

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def build(self, input_shape):
        # Create mean and count
        # These are weights because just maintaining variables don't get saved with the model, and we'd like
        # to have these numbers saved when we save the model.
        # But we need to make sure that the weights are untrainable.
        self.mean = self.add_weight(name='mean', 
                                      shape=input_shape[1:],
                                      initializer='zeros',
                                      trainable=False)
        self.count = self.add_weight(name='count', 
                                      shape=[1],
                                      initializer='zeros',
                                      trainable=False)

        # self.mean = K.zeros(input_shape[1:], name='mean')
        # self.count = K.variable(0.0, name='count')
        super(MeanStream, self).build(input_shape)  # Be sure to call this somewhere! 
開發者ID:adalca,項目名稱:neuron,代碼行數:19,代碼來源:layers.py

示例7: call

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def call(self, inputx):
        
        if not inputx.dtype in [tf.complex64, tf.complex128]:
            print('Warning: inputx is not complex. Converting.', file=sys.stderr)
        
            # if inputx is float, this will assume 0 imag channel
            inputx = tf.cast(inputx, tf.complex64)

        # get the right fft
        if self.ndims == 1:
            fft = tf.fft
        elif self.ndims == 2:
            fft = tf.fft2d
        else:
            fft = tf.fft3d

        perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1))
        invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1]
        
        perm_inputx = K.permute_dimensions(inputx, perm_dims)  # [batch_size, nb_features, *vol_size]
        fft_inputx = fft(perm_inputx)
        return K.permute_dimensions(fft_inputx, invert_perm_ndims) 
開發者ID:adalca,項目名稱:neuron,代碼行數:24,代碼來源:layers.py

示例8: convert_sequence_vocab

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def convert_sequence_vocab(self, sequence, sequence_lengths):
        PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}

        def to_uniprot_unirep(seq, seqlens):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
                new_seq[seq == pfam_encoding] = unirep_encoding

            # add start/stop
            new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
            new_seq[:, 0] = UNIREP_VOCAB['<START>']
            new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']

            return new_seq

        new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
        new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])

        return new_sequence 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:22,代碼來源:UniRepModel.py

示例9: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
               output_dim: int,
               decomp_size: int,
               use_bias: Optional[bool] = True,
               activation: Optional[Text] = None,
               kernel_initializer: Optional[Text] = 'glorot_uniform',
               bias_initializer: Optional[Text] = 'zeros',
               **kwargs) -> None:

    # Allow specification of input_dim instead of input_shape,
    # for compatability with Keras layers that support this
    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    super(DenseDecomp, self).__init__(**kwargs)

    self.output_dim = output_dim
    self.decomp_size = decomp_size

    self.use_bias = use_bias
    self.activation = activations.get(activation)
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer) 
開發者ID:google,項目名稱:TensorNetwork,代碼行數:25,代碼來源:dense.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
               exp_base: int,
               num_nodes: int,
               use_bias: Optional[bool] = True,
               activation: Optional[Text] = None,
               kernel_initializer: Optional[Text] = 'glorot_uniform',
               bias_initializer: Optional[Text] = 'zeros',
               **kwargs) -> None:

    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    super(DenseCondenser, self).__init__(**kwargs)

    self.exp_base = exp_base
    self.num_nodes = num_nodes
    self.nodes = []
    self.use_bias = use_bias
    self.activation = activations.get(activation)
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer) 
開發者ID:google,項目名稱:TensorNetwork,代碼行數:23,代碼來源:condenser.py

示例11: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 activation: OptStrOrCallable = None,
                 use_bias: bool = True,
                 kernel_initializer: OptStrOrCallable = 'glorot_uniform',
                 bias_initializer: OptStrOrCallable = 'zeros',
                 kernel_regularizer: OptStrOrCallable = None,
                 bias_regularizer: OptStrOrCallable = None,
                 activity_regularizer: OptStrOrCallable = None,
                 kernel_constraint: OptStrOrCallable = None,
                 bias_constraint: OptStrOrCallable = None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        self.activation = activations.get(activation)  # noqa
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        super().__init__(**kwargs) 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:25,代碼來源:base.py

示例12: call

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def call(self, inputs):
        def brelu(x):
            # get shape of X, we are interested in the last axis, which is constant
            shape = K.int_shape(x)
            # last axis
            dim = shape[-1]
            # half of the last axis (+1 if necessary)
            dim2 = dim // 2
            if dim % 2 != 0:
                dim2 += 1
            # multiplier will be a tensor of alternated +1 and -1
            multiplier = K.ones((dim2,))
            multiplier = K.stack([multiplier, -multiplier], axis=-1)
            if dim % 2 != 0:
                multiplier = multiplier[:-1]
            # adjust multiplier shape to the shape of x
            multiplier = K.reshape(multiplier, tuple(1 for _ in shape[:-1]) + (-1,))
            return multiplier * tf.nn.relu(multiplier * x)

        return Lambda(brelu)(inputs) 
開發者ID:digantamisra98,項目名稱:Echo,代碼行數:22,代碼來源:custom_activation.py

示例13: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
               output_dim,
               input_dim,
               init_fn='glorot_uniform',
               inner_init_fn='orthogonal',
               activation_fn='tanh',
               inner_activation_fn='hard_sigmoid',
               **kwargs):
    """
    Parameters
    ----------
    output_dim: int
      Dimensionality of output vectors.
    input_dim: int
      Dimensionality of input vectors.
    init_fn: str
      TensorFlow nitialization to use for W.
    inner_init_fn: str
      TensorFlow initialization to use for U.
    activation_fn: str
      TensorFlow activation to use for output.
    inner_activation_fn: str
      TensorFlow activation to use for inner steps.
    """

    super(LSTMStep, self).__init__(**kwargs)
    self.init = init_fn
    self.inner_init = inner_init_fn
    self.output_dim = output_dim
    # No other forget biases supported right now.
    self.activation = activation_fn
    self.inner_activation = inner_activation_fn
    self.activation_fn = activations.get(activation_fn)
    self.inner_activation_fn = activations.get(inner_activation_fn)
    self.input_dim = input_dim 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:37,代碼來源:layers.py

示例14: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 demod=True,
                 **kwargs):
        super(Conv2DMod, self).__init__(**kwargs)
        self.filters = filters
        self.rank = 2
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.demod = demod
        self.input_spec = [InputSpec(ndim = 4),
                            InputSpec(ndim = 2)] 
開發者ID:manicman1999,項目名稱:StyleGAN2-Tensorflow-2.0,代碼行數:28,代碼來源:conv_mod.py

示例15: deserialize_kwarg

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import get [as 別名]
def deserialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.get(attr)
    if key.endswith('_regularizer'):
        return regularizers.get(attr)
    if key.endswith('_constraint'):
        return constraints.get(attr)
    if key == 'activation':
        return activations.get(attr) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:11,代碼來源:keras.py


注:本文中的tensorflow.keras.initializers.get方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。