當前位置: 首頁>>代碼示例>>Python>>正文


Python initializers.RandomNormal方法代碼示例

本文整理匯總了Python中tensorflow.keras.initializers.RandomNormal方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.RandomNormal方法的具體用法?Python initializers.RandomNormal怎麽用?Python initializers.RandomNormal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.initializers的用法示例。


在下文中一共展示了initializers.RandomNormal方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: conv_lb

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def conv_lb(prev_layer, num_filters, layer_name, pad="same", batch_norm=True):
    """
    conv_lb
    Condensing operations into new function for better readability
    performs a convolution, then batch normalization, then leakyReLU
    Input: single layer (prev_layer) along with constant parameters
    Output: single layer
    """
    weight_init = RandomNormal(stddev=0.02)
    new_layer = Conv2D(
        num_filters, FILTER, strides=STRIDE, padding=pad, kernel_initializer=weight_init
    )(prev_layer)
    if batch_norm:
        new_layer = BatchNormalization()(new_layer, training=True)
    new_layer = LeakyReLU(alpha=LEAKY_RELU_ALPHA, name=layer_name)(new_layer)
    return new_layer 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:18,代碼來源:main.py

示例2: deconv_b

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def deconv_b(prev_layer, num_filters, batch_norm=True):
    """
    deconv_b
    Condensing operations into new function for better readability
    performs a convolution, then batch normalization
    Input: single layer (prev_layer) along with constant parameters
    Output: single layer
    """
    weight_init = RandomNormal(stddev=0.02)
    new_layer = Conv2DTranspose(
        num_filters,
        FILTER,
        strides=STRIDE,
        padding="same",
        activation="relu",
        kernel_initializer=weight_init,
    )(prev_layer)
    if batch_norm:
        new_layer = BatchNormalization()(new_layer, training=True)
    return new_layer 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:22,代碼來源:main.py

示例3: build

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def build(self, input_shape):
        self._shape = input_shape

        # normalize the format of depth_v and depth_k
        self.depth_k, self.depth_v = _normalize_depth_vars(self.depth_k, self.depth_v,
                                                           input_shape)

        if self.axis == 1:
            _, channels, height, width = input_shape
        else:
            _, height, width, channels = input_shape

        if self.relative:
            dk_per_head = self.depth_k // self.num_heads

            if dk_per_head == 0:
                print('dk per head', dk_per_head)

            self.key_relative_w = self.add_weight('key_rel_w',
                                                  shape=[2 * width - 1, dk_per_head],
                                                  initializer=initializers.RandomNormal(
                                                      stddev=dk_per_head ** -0.5))

            self.key_relative_h = self.add_weight('key_rel_h',
                                                  shape=[2 * height - 1, dk_per_head],
                                                  initializer=initializers.RandomNormal(
                                                      stddev=dk_per_head ** -0.5))

        else:
            self.key_relative_w = None
            self.key_relative_h = None 
開發者ID:titu1994,項目名稱:keras-attention-augmented-convs,代碼行數:33,代碼來源:attn_augconv.py

示例4: concat_deconv

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def concat_deconv(prev_layer, skip_layer, num_filters, batch_norm=True, dropout=True):
    """
    concat_deconv
    Condensing operations into new function for better readability
    Performs a deconvolution, then concatenates two layers,
    then batch normalization if batch_norm=True
    Input: two layers (prev_layer, skip_layer) along with constant parameters
    Output: single layer
    """
    weight_init = RandomNormal(stddev=0.02)
    new_layer = Conv2DTranspose(
        num_filters,
        FILTER,
        strides=STRIDE,
        padding="same",
        activation="relu",
        kernel_initializer=weight_init,
    )(prev_layer)
    new_layer = Concatenate()([skip_layer, new_layer])
    if batch_norm:
        new_layer = BatchNormalization()(new_layer, training=True)
    if dropout:
        new_layer = Dropout(rate=DROPOUT_RATE)(new_layer, training=True)
    return new_layer


###########################################################
# Generator, U-net
########################################################### 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:31,代碼來源:main.py

示例5: discriminator

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def discriminator(summary=False):
    """
    Decides whether an image is real or generated. Used in
    training the generator.
    """
    input_img = Input(shape=IMAGE_SIZE)  # image put into generator
    unknown_img = Input(shape=IMAGE_SIZE)  # either real image or generated image
    weight_init = RandomNormal(stddev=0.02)

    input_tensor = Concatenate()([input_img, unknown_img])
    d = conv_lb(input_tensor, 64, layer_name="layer_1", batch_norm=False)
    d = conv_lb(d, 128, layer_name="layer_2")
    d = conv_lb(d, 256, layer_name="layer_3")
    d = conv_lb(d, 512, layer_name="layer_4")
    d = Conv2D(
        1,
        FILTER,
        padding="same",
        kernel_initializer=weight_init,
        activation="sigmoid",
        name="layer_6",
    )(d)

    # Define discriminator model
    dis_model = Model(inputs=[input_img, unknown_img], outputs=d, name="Discriminator")
    if summary:
        dis_model.summary()
    return dis_model


###########################################################
# General Utility Functions
########################################################### 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:35,代碼來源:main.py

示例6: __init__

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def __init__(self, width, depth, num_anchors=9, separable_conv=True, freeze_bn=False, detect_quadrangle=False, **kwargs):
        super(BoxNet, self).__init__(**kwargs)
        self.width = width
        self.depth = depth
        self.num_anchors = num_anchors
        self.separable_conv = separable_conv
        self.detect_quadrangle = detect_quadrangle
        num_values = 9 if detect_quadrangle else 4
        options = {
            'kernel_size': 3,
            'strides': 1,
            'padding': 'same',
            'bias_initializer': 'zeros',
        }
        if separable_conv:
            kernel_initializer = {
                'depthwise_initializer': initializers.VarianceScaling(),
                'pointwise_initializer': initializers.VarianceScaling(),
            }
            options.update(kernel_initializer)
            self.convs = [layers.SeparableConv2D(filters=width, name=f'{self.name}/box-{i}', **options) for i in
                          range(depth)]
            self.head = layers.SeparableConv2D(filters=num_anchors * num_values,
                                               name=f'{self.name}/box-predict', **options)
        else:
            kernel_initializer = {
                'kernel_initializer': initializers.RandomNormal(mean=0.0, stddev=0.01, seed=None)
            }
            options.update(kernel_initializer)
            self.convs = [layers.Conv2D(filters=width, name=f'{self.name}/box-{i}', **options) for i in range(depth)]
            self.head = layers.Conv2D(filters=num_anchors * num_values, name=f'{self.name}/box-predict', **options)
        self.bns = [
            [layers.BatchNormalization(momentum=MOMENTUM, epsilon=EPSILON, name=f'{self.name}/box-{i}-bn-{j}') for j in
             range(3, 8)]
            for i in range(depth)]
        # self.bns = [[BatchNormalization(freeze=freeze_bn, name=f'{self.name}/box-{i}-bn-{j}') for j in range(3, 8)]
        #             for i in range(depth)]
        self.relu = layers.Lambda(lambda x: tf.nn.swish(x))
        self.reshape = layers.Reshape((-1, num_values))
        self.level = 0 
開發者ID:xuannianz,項目名稱:EfficientDet,代碼行數:42,代碼來源:model.py

示例7: cvpr2018_net

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def cvpr2018_net(vol_size, enc_nf, dec_nf, indexing='ij', name="voxelmorph"):
    """
    From https://github.com/voxelmorph/voxelmorph.

    unet architecture for voxelmorph models presented in the CVPR 2018 paper.
    You may need to modify this code (e.g., number of layers) to suit your project needs.

    :param vol_size: volume size. e.g. (256, 256, 256)
    :param enc_nf: list of encoder filters. right now it needs to be 1x4.
           e.g. [16,32,32,32]
    :param dec_nf: list of decoder filters. right now it must be 1x6 (like voxelmorph-1) or 1x7 (voxelmorph-2)
    :return: the keras model
    """
    import tensorflow.keras.layers as KL

    ndims = len(vol_size)
    assert ndims==3, "ndims should be 3. found: %d" % ndims

    src = Input(vol_size + (1,), name='input_src')
    tgt = Input(vol_size + (1,), name='input_tgt')

    input_stack = Concatenate(name='concat_inputs')([src, tgt])

    # get the core model
    x = unet3D(input_stack, img_shape=vol_size, out_im_chans=ndims, nf_enc=enc_nf, nf_dec=dec_nf)

    # transform the results into a flow field.
    Conv = getattr(KL, 'Conv%dD' % ndims)
    flow = Conv(ndims, kernel_size=3, padding='same', name='flow',
                  kernel_initializer=RandomNormal(mean=0.0, stddev=1e-5))(x)

    # warp the source with the flow
    y = SpatialTransformer(interp_method='linear', indexing=indexing)([src, flow])
    # prepare model
    model = Model(inputs=[src, tgt], outputs=[y, flow], name=name)
    return model


##############################################################################
# Appearance transform model
############################################################################## 
開發者ID:xamyzhao,項目名稱:brainstorm,代碼行數:43,代碼來源:networks.py

示例8: conv

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def conv(x, outsize, kernel_size, strides_=1, padding_='same', activation=None):
    return Conv2D(outsize, kernel_size, strides=strides_, padding=padding_, kernel_initializer=RandomNormal(
        stddev=0.001), use_bias=False, activation=activation)(x) 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:5,代碼來源:HRNet.py

示例9: generator

# 需要導入模塊: from tensorflow.keras import initializers [as 別名]
# 或者: from tensorflow.keras.initializers import RandomNormal [as 別名]
def generator(summary=False):
    """
    Generates image based on input. Uses a U-net.
    Training is focused on making the generator
    as good as possible, because the generator
    is used in inference.

    variable legend:
        e = encoder
        s = center layer
        d = decoder
        # (ie 1,2,3,etc) = layer number
        a = activation
        b = batch normalization
        c = a concatenated layer
    So d3ab is the layer 3 decoder that has gone
    through activation and batch normalization.
    """
    # -----------------------------------------------------------
    # Encoder
    input_tensor = Input(shape=IMAGE_SIZE)
    e1a = conv_lb(input_tensor, 64, layer_name="layer_1", batch_norm=False)
    e2ba = conv_lb(e1a, 128, layer_name="layer_2")
    e3ba = conv_lb(e2ba, 256, layer_name="layer_3")
    e4ba = conv_lb(e3ba, 512, layer_name="layer_4")
    e5ba = conv_lb(e4ba, 512, layer_name="layer_5")
    e6ba = conv_lb(e5ba, 512, layer_name="layer_6")
    e7ba = conv_lb(e6ba, 512, layer_name="layer_7")
    # -----------------------------------------------------------
    # Center layer
    s8ba = conv_lb(e7ba, 512, layer_name="middle_layer", batch_norm=False)
    # -----------------------------------------------------------
    # Decoder
    d9cba = concat_deconv(s8ba, e7ba, 512)
    d10cba = concat_deconv(d9cba, e6ba, 512)
    d11cba = concat_deconv(d10cba, e5ba, 512)
    d12cba = concat_deconv(d11cba, e4ba, 512, dropout=False)
    d13cba = concat_deconv(d12cba, e3ba, 256, dropout=False)
    d14cba = concat_deconv(d13cba, e2ba, 128, dropout=False)
    d15cba = concat_deconv(d14cba, e1a, 64, dropout=False)
    d16ba = Conv2DTranspose(
        3,
        FILTER,
        strides=STRIDE,
        padding="same",
        activation="tanh",
        kernel_initializer=RandomNormal(stddev=0.02),
    )(d15cba)
    # Define generator model
    gen_model = Model(input_tensor, d16ba, name="Generator")
    if summary:
        gen_model.summary()
    return gen_model


###########################################################
# Discriminator
########################################################### 
開發者ID:intel,項目名稱:stacks-usecase,代碼行數:60,代碼來源:main.py


注:本文中的tensorflow.keras.initializers.RandomNormal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。