當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.keras方法代碼示例

本文整理匯總了Python中tensorflow.keras方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.keras方法的具體用法?Python tensorflow.keras怎麽用?Python tensorflow.keras使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.keras方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testUnconstrainedNoMissingValue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testUnconstrainedNoMissingValue(self, units, one_d_input, expected_loss):
    if self._disable_all:
      return
    config = {
        "units": units,
        "one_d_input": one_d_input,
        "num_training_records": 100,
        "num_training_epoch": 2000,
        "optimizer": tf.keras.optimizers.Adagrad,
        "learning_rate": 0.15,
        "x_generator": self._ScatterXUniformly,
        "y_function": self._SmallWaves,
        "monotonicity": 0,
        "num_keypoints": 21,
        "input_min": -1.0,
        "input_max": 1.0,
        "output_min": None,
        "output_max": None,
    }
    loss = self._TrainModel(config)
    self.assertAlmostEqual(loss, expected_loss, delta=self._loss_eps)
    if units > 1 and not one_d_input:
      config["use_multi_calibration_layer"] = True
      loss = self._TrainModel(config)
      self.assertAlmostEqual(loss, expected_loss, delta=self._loss_eps) 
開發者ID:tensorflow,項目名稱:lattice,代碼行數:27,代碼來源:pwl_calibration_test.py

示例2: testConvexityNonUniformKeypoints

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testConvexityNonUniformKeypoints(self, units, convexity, expected_loss):
    # No constraints other than convexity.
    if self._disable_all:
      return

    config = {
        "units": units,
        "num_training_records": 100,
        "num_training_epoch": 200,
        "optimizer": tf.keras.optimizers.Adagrad,
        "learning_rate": 1.0,
        "x_generator": self._ScatterXUniformly,
        "y_function": self._WavyParabola,
        "monotonicity": 0,
        "convexity": convexity,
        "input_keypoints": [-1.0, -0.9, -0.3, -0.2, 0.0, 0.3, 0.31, 0.35, 1.0],
        "output_min": None,
        "output_max": None,
    }
    loss = self._TrainModel(config)
    self.assertAlmostEqual(loss, expected_loss, delta=self._loss_eps)
    if units > 1:
      config["use_multi_calibration_layer"] = True
      loss = self._TrainModel(config)
      self.assertAlmostEqual(loss, expected_loss, delta=self._loss_eps) 
開發者ID:tensorflow,項目名稱:lattice,代碼行數:27,代碼來源:pwl_calibration_test.py

示例3: testInputKeypoints

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testInputKeypoints(self, keypoints):
    if self._disable_all:
      return
    config = {
        "num_training_records": 100,
        "num_training_epoch": 200,
        "optimizer": tf.keras.optimizers.Adagrad,
        "learning_rate": 0.15,
        "x_generator": self._ScatterXUniformly,
        "y_function": self._SmallWaves,
        "monotonicity": 0,
        "input_keypoints": keypoints,
        "output_min": None,
        "output_max": None,
    }
    loss = self._TrainModel(config)
    self.assertAlmostEqual(loss, 0.009650, delta=self._loss_eps) 
開發者ID:tensorflow,項目名稱:lattice,代碼行數:19,代碼來源:pwl_calibration_test.py

示例4: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def __call__(self, model):
        """
        :param model: Keras model to be accelerated
        :type model: Union[keras.Model, keras.Sequential]
        :return: Accelerated Keras model
        :rtype: Union[keras.Model, keras.Sequential]
        """
        if isinstance(model, tfk.Model) or isinstance(model, tfk.Sequential):
            self.model = model
        else:
            raise TypeError(f'FastMCInference expects tensorflow.keras Model, you gave {type(model)}')
        new_input = tfk.layers.Input(shape=(self.model.input_shape[1:]), name='input')
        mc_model = tfk.models.Model(inputs=self.model.inputs, outputs=self.model.outputs)

        mc = FastMCInferenceMeanVar()(tfk.layers.TimeDistributed(mc_model)(FastMCRepeat(self.n)(new_input)))
        new_mc_model = tfk.models.Model(inputs=new_input, outputs=mc)

        return new_mc_model 
開發者ID:henrysky,項目名稱:astroNN,代碼行數:20,代碼來源:layers.py

示例5: _update_t_cur_eta_t_v2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def _update_t_cur_eta_t_v2(self, lr_t=None, var=None):  # tf.keras
    t_cur_update, eta_t_update = None, None  # in case not assigned

    # update `t_cur` if iterating last `(grad, var)`
    iteration_done = self._updates_processed == (self._updates_per_iter - 1)
    if iteration_done:
        t_cur_update = state_ops.assign_add(self.t_cur, 1,
                                            use_locking=self._use_locking)
        self._updates_processed = 0  # reset
    else:
        self._updates_processed += 1

    # Cosine annealing
    if self.use_cosine_annealing and iteration_done:
        # ensure eta_t is updated AFTER t_cur
        with ops.control_dependencies([t_cur_update]):
            eta_t_update = state_ops.assign(self.eta_t, _compute_eta_t(self),
                                            use_locking=self._use_locking)
        self.lr_t = lr_t * self.eta_t  # for external tracking

    return iteration_done, t_cur_update, eta_t_update 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:23,代碼來源:utils.py

示例6: build_layerwise_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def build_layerwise_model(input_shape, **pruning_params):
  return tf.keras.Sequential([
      prune.prune_low_magnitude(
          l.Conv2D(32, 5, padding='same', activation='relu'),
          input_shape=input_shape,
          **pruning_params),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.BatchNormalization(),
      prune.prune_low_magnitude(
          l.Conv2D(64, 5, padding='same', activation='relu'), **pruning_params),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.Flatten(),
      prune.prune_low_magnitude(
          l.Dense(1024, activation='relu'), **pruning_params),
      l.Dropout(0.4),
      prune.prune_low_magnitude(
          l.Dense(num_classes, activation='softmax'), **pruning_params)
  ]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:20,代碼來源:mnist_cnn.py

示例7: build_layerwise_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def build_layerwise_model(input_shape, **pruning_params):
  return tf.keras.Sequential([
      l.Conv2D(
          32, 5, padding='same', activation='relu', input_shape=input_shape),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.Conv2D(64, 5, padding='same'),
      l.BatchNormalization(),
      l.ReLU(),
      l.MaxPooling2D((2, 2), (2, 2), padding='same'),
      l.Flatten(),
      prune.prune_low_magnitude(
          l.Dense(1024, activation='relu'), **pruning_params),
      l.Dropout(0.4),
      prune.prune_low_magnitude(
          l.Dense(num_classes, activation='softmax'), **pruning_params)
  ]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:mnist_e2e.py

示例8: testValuesRemainClusteredAfterTraining

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testValuesRemainClusteredAfterTraining(self):
    """Verifies that training a clustered model does not destroy the clusters."""
    original_model = keras.Sequential([
        layers.Dense(2, input_shape=(2,)),
        layers.Dense(2),
    ])

    clustered_model = cluster.cluster_weights(original_model, **self.params)

    clustered_model.compile(
        loss=keras.losses.categorical_crossentropy,
        optimizer="adam",
        metrics=["accuracy"],
    )

    clustered_model.fit(x=self.dataset_generator(), steps_per_epoch=1)
    stripped_model = cluster.strip_clustering(clustered_model)
    weights_as_list = stripped_model.get_weights()[0].reshape(-1,).tolist()
    unique_weights = set(weights_as_list)
    self.assertLessEqual(len(unique_weights), self.params["number_of_clusters"]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:cluster_integration_test.py

示例9: testClusterModelValidLayersSuccessful

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testClusterModelValidLayersSuccessful(self):
    """
    Verifies that clustering a sequential model results in all clusterable
    layers within the model being clustered.
    """
    model = keras.Sequential([
        self.keras_clusterable_layer,
        self.keras_non_clusterable_layer,
        self.custom_clusterable_layer
    ])
    clustered_model = cluster.cluster_weights(model, **self.params)
    clustered_model.build(input_shape=(1, 28, 28, 1))

    self.assertEqual(len(model.layers), len(clustered_model.layers))
    for layer, clustered_layer in zip(model.layers, clustered_model.layers):
      self._validate_clustered_layer(layer, clustered_layer) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:cluster_test.py

示例10: testClusterModelDoesNotWrapAlreadyWrappedLayer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testClusterModelDoesNotWrapAlreadyWrappedLayer(self):
    """
    Verifies that clustering a model that contains an already clustered layer
    does not result in wrapping the clustered layer into another
    cluster_wrapper.
    """
    model = keras.Sequential(
        [
            layers.Flatten(),
            cluster.cluster_weights(layers.Dense(10), **self.params),
        ])
    clustered_model = cluster.cluster_weights(model, **self.params)
    clustered_model.build(input_shape=(10, 10, 1))

    self.assertEqual(len(model.layers), len(clustered_model.layers))
    self._validate_clustered_layer(model.layers[0], clustered_model.layers[0])
    # Second layer is used as-is since it's already a clustered layer.
    self.assertEqual(model.layers[1], clustered_model.layers[1])
    self._validate_clustered_layer(model.layers[1].layer,
                                   clustered_model.layers[1]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:cluster_test.py

示例11: testClusterSequentialModelPreservesBuiltStateNoInput

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testClusterSequentialModelPreservesBuiltStateNoInput(self):
    """
    Verifies that clustering a sequential model without an input layer
    preserves the built state of the model.
    """
    # No InputLayer
    model = keras.Sequential([
        layers.Dense(10),
        layers.Dense(10),
    ])
    self.assertEqual(model.built, False)
    clustered_model = cluster.cluster_weights(model, **self.params)
    self.assertEqual(model.built, False)

    # Test built state is preserved across serialization
    with cluster.cluster_scope():
      loaded_model = keras.models.model_from_config(
          json.loads(clustered_model.to_json()))
      self.assertEqual(loaded_model.built, False) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:21,代碼來源:cluster_test.py

示例12: testClusterFunctionalModelPreservesBuiltState

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testClusterFunctionalModelPreservesBuiltState(self):
    """
    Verifies that clustering a functional model preserves the built state of
    the model.
    """
    i1 = keras.Input(shape=(10,))
    i2 = keras.Input(shape=(10,))
    x1 = layers.Dense(10)(i1)
    x2 = layers.Dense(10)(i2)
    outputs = layers.Add()([x1, x2])
    model = keras.Model(inputs=[i1, i2], outputs=outputs)
    self.assertEqual(model.built, True)
    clustered_model = cluster.cluster_weights(model, **self.params)
    self.assertEqual(model.built, True)

    # Test built state preserves across serialization
    with cluster.cluster_scope():
      loaded_model = keras.models.model_from_config(
          json.loads(clustered_model.to_json()))
    self.assertEqual(loaded_model.built, True) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:cluster_test.py

示例13: testClusterWeightsStrippedWeights

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testClusterWeightsStrippedWeights(self):
    """
    Verifies that stripping the clustering wrappers from a functional model
    preserves the clustered weights.
    """
    i1 = keras.Input(shape=(10,))
    x1 = layers.BatchNormalization()(i1)
    outputs = x1
    model = keras.Model(inputs=[i1], outputs=outputs)

    clustered_model = cluster.cluster_weights(model, **self.params)
    cluster_weight_length = (len(clustered_model.get_weights()))
    stripped_model = cluster.strip_clustering(clustered_model)

    self.assertEqual(self._count_clustered_layers(stripped_model), 0)
    self.assertEqual(len(stripped_model.get_weights()), cluster_weight_length) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:cluster_test.py

示例14: testStrippedKernel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testStrippedKernel(self):
    """
    Verifies that stripping the clustering wrappers from a functional model
    restores the layers kernel and the layers weight array to the new clustered weight value .
    """
    i1 = keras.Input(shape=(1, 1, 1))
    x1 = layers.Conv2D(1, 1)(i1)
    outputs = x1
    model = keras.Model(inputs=[i1], outputs=outputs)

    clustered_model = cluster.cluster_weights(model, **self.params)
    clustered_conv2d_layer = clustered_model.layers[1]
    clustered_kernel = clustered_conv2d_layer.layer.kernel
    stripped_model = cluster.strip_clustering(clustered_model)
    stripped_conv2d_layer = stripped_model.layers[1]

    self.assertEqual(self._count_clustered_layers(stripped_model), 0)
    self.assertIsNot(stripped_conv2d_layer.kernel, clustered_kernel)
    self.assertEqual(stripped_conv2d_layer.kernel,
                     stripped_conv2d_layer.weights[0]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:cluster_test.py

示例15: testStripSelectivelyClusteredFunctionalModel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import keras [as 別名]
def testStripSelectivelyClusteredFunctionalModel(self):
    """
    Verifies that invoking strip_clustering() on a selectively clustered
    functional model strips the clustering wrappers from the clustered layers.
    """
    i1 = keras.Input(shape=(10,))
    i2 = keras.Input(shape=(10,))
    x1 = cluster.cluster_weights(layers.Dense(10), **self.params)(i1)
    x2 = layers.Dense(10)(i2)
    outputs = layers.Add()([x1, x2])
    clustered_model = keras.Model(inputs=[i1, i2], outputs=outputs)

    stripped_model = cluster.strip_clustering(clustered_model)

    self.assertEqual(self._count_clustered_layers(stripped_model), 0)
    self.assertIsInstance(stripped_model.layers[2], layers.Dense) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:cluster_test.py


注:本文中的tensorflow.keras方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。