本文整理匯總了Python中tensorflow.keras.constraints.get方法的典型用法代碼示例。如果您正苦於以下問題:Python constraints.get方法的具體用法?Python constraints.get怎麽用?Python constraints.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.constraints
的用法示例。
在下文中一共展示了constraints.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
ratio,
return_mask=False,
sigmoid_gating=False,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.ratio = ratio
self.return_mask = return_mask
self.sigmoid_gating = sigmoid_gating
self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
示例2: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
channels,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.channels = channels
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
示例3: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
k,
channels=None,
return_mask=False,
activation=None,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.k = k
self.channels = channels
self.return_mask = return_mask
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
示例4: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
channels,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
self.channels = channels
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.supports_masking = False
示例5: convert_sequence_vocab
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def convert_sequence_vocab(self, sequence, sequence_lengths):
PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}
def to_uniprot_unirep(seq, seqlens):
new_seq = np.zeros_like(seq)
for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
new_seq[seq == pfam_encoding] = unirep_encoding
# add start/stop
new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
new_seq[:, 0] = UNIREP_VOCAB['<START>']
new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']
return new_seq
new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])
return new_sequence
示例6: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
activation: OptStrOrCallable = None,
use_bias: bool = True,
kernel_initializer: OptStrOrCallable = 'glorot_uniform',
bias_initializer: OptStrOrCallable = 'zeros',
kernel_regularizer: OptStrOrCallable = None,
bias_regularizer: OptStrOrCallable = None,
activity_regularizer: OptStrOrCallable = None,
kernel_constraint: OptStrOrCallable = None,
bias_constraint: OptStrOrCallable = None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
self.activation = activations.get(activation) # noqa
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
super().__init__(**kwargs)
示例7: call
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def call(self, inputs):
def brelu(x):
# get shape of X, we are interested in the last axis, which is constant
shape = K.int_shape(x)
# last axis
dim = shape[-1]
# half of the last axis (+1 if necessary)
dim2 = dim // 2
if dim % 2 != 0:
dim2 += 1
# multiplier will be a tensor of alternated +1 and -1
multiplier = K.ones((dim2,))
multiplier = K.stack([multiplier, -multiplier], axis=-1)
if dim % 2 != 0:
multiplier = multiplier[:-1]
# adjust multiplier shape to the shape of x
multiplier = K.reshape(multiplier, tuple(1 for _ in shape[:-1]) + (-1,))
return multiplier * tf.nn.relu(multiplier * x)
return Lambda(brelu)(inputs)
示例8: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
filters,
kernel_size,
strides=1,
padding='valid',
dilation_rate=1,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
demod=True,
**kwargs):
super(Conv2DMod, self).__init__(**kwargs)
self.filters = filters
self.rank = 2
self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.demod = demod
self.input_spec = [InputSpec(ndim = 4),
InputSpec(ndim = 2)]
示例9: deserialize_kwarg
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def deserialize_kwarg(key, attr):
if key.endswith('_initializer'):
return initializers.get(attr)
if key.endswith('_regularizer'):
return regularizers.get(attr)
if key.endswith('_constraint'):
return constraints.get(attr)
if key == 'activation':
return activations.get(attr)
示例10: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
trainable_kernel=False,
activation=None,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.trainable_kernel = trainable_kernel
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
示例11: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
k,
mlp_hidden=None,
mlp_activation='relu',
return_mask=False,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.k = k
self.mlp_hidden = mlp_hidden if mlp_hidden else []
self.mlp_activation = mlp_activation
self.return_mask = return_mask
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
示例12: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
groups=4,
axis=-1,
epsilon=1e-5,
center=True,
scale=True,
beta_initializer="zeros",
gamma_initializer="ones",
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
**kwargs):
super(GroupNormalization, self).__init__(**kwargs)
self.supports_masking = True
self.groups = groups
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = initializers.get(beta_initializer)
self.gamma_initializer = initializers.get(gamma_initializer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_constraint = constraints.get(beta_constraint)
self.gamma_constraint = constraints.get(gamma_constraint)
示例13: __init__
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
kernel_size,
strides=(1, 1),
padding='valid',
depth_multiplier=1,
data_format=None,
activation=None,
use_bias=True,
depthwise_initializer='glorot_uniform',
bias_initializer='zeros',
depthwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
bias_constraint=None,
**kwargs):
super(DepthwiseConv2D, self).__init__(
filters=None,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=activation,
use_bias=use_bias,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
bias_constraint=bias_constraint,
**kwargs)
self.depth_multiplier = depth_multiplier
self.depthwise_initializer = initializers.get(depthwise_initializer)
self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
self.depthwise_constraint = constraints.get(depthwise_constraint)
self.bias_initializer = initializers.get(bias_initializer)
self.depthwise_kernel = None
self.bias = None
示例14: get_auto_range_constraint_initializer
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def get_auto_range_constraint_initializer(quantizer, constraint, initializer):
"""Get value range automatically for quantizer.
Arguments:
quantizer: A quantizer class in quantizers.py.
constraint: A tf.keras constraint.
initializer: A tf.keras initializer.
Returns:
a tuple (constraint, initializer), where
constraint is clipped by Clip class in this file, based on the
value range of quantizer.
initializer is initializer contraint by value range of quantizer.
"""
if quantizer is not None:
# let's use now symmetric clipping function
max_value = max(1, quantizer.max()) if hasattr(quantizer, "max") else 1.0
min_value = quantizer.min() if hasattr(quantizer, "min") else -1.0
if constraint:
constraint = constraints.get(constraint)
constraint = Clip(-max_value, max_value, constraint, quantizer)
initializer = initializers.get(initializer)
if initializer and initializer.__class__.__name__ not in ["Ones", "Zeros"]:
# we want to get the max value of the quantizer that depends
# on the distribution and scale
if not (hasattr(quantizer, "alpha") and
isinstance(quantizer.alpha, six.string_types)):
initializer = QInitializer(
initializer, use_scale=True, quantizer=quantizer)
return constraint, initializer
示例15: get_config
# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def get_config(self):
return {
"initializer": self.initializer,
"use_scale": self.use_scale,
"quantizer": self.quantizer,
}
#
# Because it may be hard to get serialization from activation functions,
# we may be replacing their instantiation by QActivation in the future.
#