當前位置: 首頁>>代碼示例>>Python>>正文


Python constraints.get方法代碼示例

本文整理匯總了Python中tensorflow.keras.constraints.get方法的典型用法代碼示例。如果您正苦於以下問題:Python constraints.get方法的具體用法?Python constraints.get怎麽用?Python constraints.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.constraints的用法示例。


在下文中一共展示了constraints.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 ratio,
                 return_mask=False,
                 sigmoid_gating=False,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.ratio = ratio
        self.return_mask = return_mask
        self.sigmoid_gating = sigmoid_gating
        self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:18,代碼來源:topk_pool.py

示例2: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 channels,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.channels = channels
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:19,代碼來源:global_pool.py

示例3: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 k,
                 channels=None,
                 return_mask=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.channels = channels
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:diff_pool.py

示例4: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 channels,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(activity_regularizer=activity_regularizer, **kwargs)
        self.channels = channels
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = False 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:26,代碼來源:graph_conv.py

示例5: convert_sequence_vocab

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def convert_sequence_vocab(self, sequence, sequence_lengths):
        PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}

        def to_uniprot_unirep(seq, seqlens):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
                new_seq[seq == pfam_encoding] = unirep_encoding

            # add start/stop
            new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
            new_seq[:, 0] = UNIREP_VOCAB['<START>']
            new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']

            return new_seq

        new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
        new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])

        return new_sequence 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:22,代碼來源:UniRepModel.py

示例6: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 activation: OptStrOrCallable = None,
                 use_bias: bool = True,
                 kernel_initializer: OptStrOrCallable = 'glorot_uniform',
                 bias_initializer: OptStrOrCallable = 'zeros',
                 kernel_regularizer: OptStrOrCallable = None,
                 bias_regularizer: OptStrOrCallable = None,
                 activity_regularizer: OptStrOrCallable = None,
                 kernel_constraint: OptStrOrCallable = None,
                 bias_constraint: OptStrOrCallable = None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        self.activation = activations.get(activation)  # noqa
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        super().__init__(**kwargs) 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:25,代碼來源:base.py

示例7: call

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def call(self, inputs):
        def brelu(x):
            # get shape of X, we are interested in the last axis, which is constant
            shape = K.int_shape(x)
            # last axis
            dim = shape[-1]
            # half of the last axis (+1 if necessary)
            dim2 = dim // 2
            if dim % 2 != 0:
                dim2 += 1
            # multiplier will be a tensor of alternated +1 and -1
            multiplier = K.ones((dim2,))
            multiplier = K.stack([multiplier, -multiplier], axis=-1)
            if dim % 2 != 0:
                multiplier = multiplier[:-1]
            # adjust multiplier shape to the shape of x
            multiplier = K.reshape(multiplier, tuple(1 for _ in shape[:-1]) + (-1,))
            return multiplier * tf.nn.relu(multiplier * x)

        return Lambda(brelu)(inputs) 
開發者ID:digantamisra98,項目名稱:Echo,代碼行數:22,代碼來源:custom_activation.py

示例8: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 demod=True,
                 **kwargs):
        super(Conv2DMod, self).__init__(**kwargs)
        self.filters = filters
        self.rank = 2
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.demod = demod
        self.input_spec = [InputSpec(ndim = 4),
                            InputSpec(ndim = 2)] 
開發者ID:manicman1999,項目名稱:StyleGAN2-Tensorflow-2.0,代碼行數:28,代碼來源:conv_mod.py

示例9: deserialize_kwarg

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def deserialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.get(attr)
    if key.endswith('_regularizer'):
        return regularizers.get(attr)
    if key.endswith('_constraint'):
        return constraints.get(attr)
    if key == 'activation':
        return activations.get(attr) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:11,代碼來源:keras.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 trainable_kernel=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.trainable_kernel = trainable_kernel
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:16,代碼來源:base.py

示例11: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 k,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 return_mask=False,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = mlp_activation
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:30,代碼來源:mincut_pool.py

示例12: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 groups=4,
                 axis=-1,
                 epsilon=1e-5,
                 center=True,
                 scale=True,
                 beta_initializer="zeros",
                 gamma_initializer="ones",
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 **kwargs):
        super(GroupNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.groups = groups
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint) 
開發者ID:sandialabs,項目名稱:bcnn,代碼行數:28,代碼來源:groupnorm.py

示例13: __init__

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
        self.depthwise_kernel = None
        self.bias = None 
開發者ID:titu1994,項目名稱:keras-squeeze-excite-network,代碼行數:37,代碼來源:se_mobilenets.py

示例14: get_auto_range_constraint_initializer

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def get_auto_range_constraint_initializer(quantizer, constraint, initializer):
  """Get value range automatically for quantizer.

  Arguments:
   quantizer: A quantizer class in quantizers.py.
   constraint: A tf.keras constraint.
   initializer: A tf.keras initializer.

  Returns:
    a tuple (constraint, initializer), where
      constraint is clipped by Clip class in this file, based on the
      value range of quantizer.
      initializer is initializer contraint by value range of quantizer.
  """
  if quantizer is not None:
    # let's use now symmetric clipping function
    max_value = max(1, quantizer.max()) if hasattr(quantizer, "max") else 1.0
    min_value = quantizer.min() if hasattr(quantizer, "min") else -1.0

    if constraint:
      constraint = constraints.get(constraint)

    constraint = Clip(-max_value, max_value, constraint, quantizer)
    initializer = initializers.get(initializer)
    if initializer and initializer.__class__.__name__ not in ["Ones", "Zeros"]:
      # we want to get the max value of the quantizer that depends
      # on the distribution and scale
      if not (hasattr(quantizer, "alpha") and
              isinstance(quantizer.alpha, six.string_types)):
        initializer = QInitializer(
            initializer, use_scale=True, quantizer=quantizer)
  return constraint, initializer 
開發者ID:google,項目名稱:qkeras,代碼行數:34,代碼來源:qlayers.py

示例15: get_config

# 需要導入模塊: from tensorflow.keras import constraints [as 別名]
# 或者: from tensorflow.keras.constraints import get [as 別名]
def get_config(self):
    return {
        "initializer": self.initializer,
        "use_scale": self.use_scale,
        "quantizer": self.quantizer,
    }


#
# Because it may be hard to get serialization from activation functions,
# we may be replacing their instantiation by QActivation in the future.
# 
開發者ID:google,項目名稱:qkeras,代碼行數:14,代碼來源:qlayers.py


注:本文中的tensorflow.keras.constraints.get方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。