本文整理匯總了Python中tensorflow.keras.callbacks.EarlyStopping方法的典型用法代碼示例。如果您正苦於以下問題:Python callbacks.EarlyStopping方法的具體用法?Python callbacks.EarlyStopping怎麽用?Python callbacks.EarlyStopping使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.callbacks
的用法示例。
在下文中一共展示了callbacks.EarlyStopping方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def train(self, batch_size=512, epochs=20):
model = self.build_model()
# early_stop配合checkpoint使用,可以得到val_loss最小的模型
early_stop = EarlyStopping(patience=3, verbose=1)
checkpoint = ModelCheckpoint(os.path.join(self.model_path, 'weights.{epoch:03d}-{val_loss:.3f}.h5'),
verbose=1,
monitor='val_loss',
save_best_only=True)
history = model.fit(self.x_train,
self.y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=[checkpoint, early_stop],
validation_data=(self.x_test, self.y_test))
plot(history)
return model
示例2: main
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def main():
model = create_model(trainable=TRAINABLE)
model.summary()
if TRAINABLE:
model.load_weights(WEIGHTS)
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss=loss, optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_dice:.2f}.h5", monitor="val_dice", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_dice", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_dice", factor=0.2, patience=5, min_lr=1e-6, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例3: main
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def main():
model = create_model()
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
optimizer = Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss={"coords" : log_mse, "classes" : focal_loss()}, loss_weights={"coords" : 1, "classes" : 1}, optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")
model.summary()
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例4: main
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def main():
model = create_model()
model.summary()
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
model.compile(loss="mean_squared_error", optimizer="adam", metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例5: _callbacks
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def _callbacks(
self,
*,
es_params={
'patience': 20,
'monitor': 'val_loss'
},
lr_params={
'monitor': 'val_loss',
'patience': 4,
'factor': 0.2
}
):
early_stopping = EarlyStopping(**es_params)
learning_rate_reduction = ReduceLROnPlateau(**lr_params)
return {
'forecaster': [],
'embedder': [],
'combined': [
early_stopping, learning_rate_reduction
]
}
示例6: train
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def train(self, weights_only=True, call_back=False):
model = self._build_model()
if call_back:
early_stopping = EarlyStopping(monitor='val_loss', patience=30)
stamp = 'lstm_%d' % self.n_hidden
checkpoint_dir = os.path.join(
self.model_path, 'checkpoints/' + str(int(time.time())) + '/')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
bst_model_path = checkpoint_dir + stamp + '.h5'
if weights_only:
model_checkpoint = ModelCheckpoint(
bst_model_path, save_best_only=True, save_weights_only=True)
else:
model_checkpoint = ModelCheckpoint(
bst_model_path, save_best_only=True)
tensor_board = TensorBoard(
log_dir=checkpoint_dir + "logs/{}".format(time.time()))
callbacks = [early_stopping, model_checkpoint, tensor_board]
else:
callbacks = None
model_trained = model.fit([self.x_train['left'], self.x_train['right']],
self.y_train,
batch_size=self.batch_size,
epochs=self.epochs,
validation_data=([self.x_val['left'], self.x_val['right']], self.y_val),
verbose=1,
callbacks=callbacks)
if weights_only and not call_back:
model.save_weights(os.path.join(self.model_path, 'weights_only.h5'))
elif not weights_only and not call_back:
model.save(os.path.join(self.model_path, 'model.h5'))
self._save_config()
plot(model_trained)
return model
示例7: main
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def main():
model = create_model(trainable=TRAINABLE)
model.summary()
if TRAINABLE:
model.load_weights(WEIGHTS)
train_datagen = DataGenerator(TRAIN_CSV)
val_generator = DataGenerator(VALIDATION_CSV, rnd_rescale=False, rnd_multiply=False, rnd_crop=False, rnd_flip=False, debug=False)
validation_datagen = Validation(generator=val_generator)
learning_rate = LEARNING_RATE
if TRAINABLE:
learning_rate /= 10
optimizer = SGD(lr=learning_rate, decay=LR_DECAY, momentum=0.9, nesterov=False)
model.compile(loss=detection_loss(), optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.6, patience=5, min_lr=1e-6, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTITHREADING,
shuffle=True,
verbose=1)
示例8: fit_model_softmax
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def fit_model_softmax(dsm: DeepSpeakerModel, kx_train, ky_train, kx_test, ky_test,
batch_size=BATCH_SIZE, max_epochs=1000, initial_epoch=0):
checkpoint_name = dsm.m.name + '_checkpoint'
checkpoint_filename = os.path.join(CHECKPOINTS_SOFTMAX_DIR, checkpoint_name + '_{epoch}.h5')
checkpoint = ModelCheckpoint(monitor='val_accuracy', filepath=checkpoint_filename, save_best_only=True)
# if the accuracy does not increase by 0.1% over 20 epochs, we stop the training.
early_stopping = EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=20, verbose=1, mode='max')
# if the accuracy does not increase over 10 epochs, we reduce the learning rate by half.
reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=10, min_lr=0.0001, verbose=1)
max_len_train = len(kx_train) - len(kx_train) % batch_size
kx_train = kx_train[0:max_len_train]
ky_train = ky_train[0:max_len_train]
max_len_test = len(kx_test) - len(kx_test) % batch_size
kx_test = kx_test[0:max_len_test]
ky_test = ky_test[0:max_len_test]
dsm.m.fit(x=kx_train,
y=ky_train,
batch_size=batch_size,
epochs=initial_epoch + max_epochs,
initial_epoch=initial_epoch,
verbose=1,
shuffle=True,
validation_data=(kx_test, ky_test),
callbacks=[early_stopping, reduce_lr, checkpoint])
示例9: train
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def train():
with open('config.json', 'r') as f:
cfg = json.load(f)
save_dir = cfg['save_dir']
shape = (int(cfg['height']), int(cfg['width']), 3)
n_class = int(cfg['class_number'])
batch = int(cfg['batch'])
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if cfg['model'] == 'large':
from mobilenet_v3_large import MobileNetV3_Large
model = MobileNetV3_Large(shape, n_class).build()
if cfg['model'] == 'small':
from mobilenet_v3_small import MobileNetV3_Small
model = MobileNetV3_Small(shape, n_class).build()
opt = Adam(lr=float(cfg['learning_rate']))
earlystop = EarlyStopping(monitor='val_acc', patience=5, verbose=0, mode='auto')
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
train_generator, validation_generator, count1, count2 = generate(batch, shape[:2], cfg['train_dir'], cfg['eval_dir'])
hist = model.fit_generator(
train_generator,
validation_data=validation_generator,
steps_per_epoch=count1 // batch,
validation_steps=count2 // batch,
epochs=cfg['epochs'],
callbacks=[earlystop])
df = pd.DataFrame.from_dict(hist.history)
df.to_csv(os.path.join(save_dir, 'hist.csv'), encoding='utf-8', index=False)
model.save_weights(os.path.join(save_dir, '{}_weights.h5'.format(cfg['model'])))
示例10: train
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def train(self, training_data, cfg, **kwargs):
classifier_model = eval("clf." + self.classifier_model)
epochs = self.component_config.get('epochs')
batch_size = self.component_config.get('batch_size')
validation_split = self.component_config.get('validation_split')
patience = self.component_config.get('patience')
factor = self.component_config.get('factor')
verbose = self.component_config.get('verbose')
X, Y = [], []
for msg in training_data.intent_examples:
X.append(self.tokenizer.tokenize(msg.text))
Y.append(msg.get('intent'))
train_x, validate_x, train_y, validate_y = train_test_split( X, Y, test_size=validation_split, random_state=100)
self.bert_embedding.processor.add_bos_eos = False
self.model = classifier_model(self.bert_embedding)
checkpoint = ModelCheckpoint(
'intent_weights.h5',
monitor='val_loss',
save_best_only=True,
save_weights_only=False,
verbose=verbose)
early_stopping = EarlyStopping(
monitor='val_loss',
patience=patience)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=factor,
patience=patience,
verbose=verbose)
self.model.fit(
train_x,
train_y,
validate_x,
validate_y,
epochs=epochs,
batch_size=batch_size,
callbacks=[checkpoint, early_stopping, reduce_lr]
)
示例11: train
# 需要導入模塊: from tensorflow.keras import callbacks [as 別名]
# 或者: from tensorflow.keras.callbacks import EarlyStopping [as 別名]
def train(self, training_data, cfg, **kwargs):
labeling_model = eval("labeling." + self.labeling_model)
epochs = self.component_config.get('epochs')
batch_size = self.component_config.get('batch_size')
validation_split = self.component_config.get('validation_split')
patience = self.component_config.get('patience')
factor = self.component_config.get('factor')
verbose = self.component_config.get('verbose')
filtered_entity_examples = self.filter_trainable_entities(training_data.training_examples)
X, Y = self._create_dataset(filtered_entity_examples)
train_x, validate_x, train_y, validate_y = train_test_split( X, Y, test_size=validation_split, random_state=100)
self.model = labeling_model(self.bert_embedding)
checkpoint = ModelCheckpoint(
'entity_weights.h5',
monitor='val_loss',
save_best_only=True,
save_weights_only=False,
verbose=verbose)
early_stopping = EarlyStopping(
monitor='val_loss',
patience=patience)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=factor,
patience=patience,
verbose=verbose)
self.model.fit(
train_x,
train_y,
validate_x,
validate_y,
epochs=epochs,
batch_size=batch_size,
callbacks=[checkpoint, early_stopping, reduce_lr]
)