當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.variable方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.variable方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.variable方法的具體用法?Python backend.variable怎麽用?Python backend.variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_amplitude_to_decibel

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def test_amplitude_to_decibel():
    """test for backend_keras.amplitude_to_decibel"""
    from kapre.backend_keras import amplitude_to_decibel

    x = np.array([[1e-20, 1e-5, 1e-3, 5e-2], [0.3, 1.0, 20.5, 9999]])  # random positive numbers

    amin = 1e-5
    dynamic_range = 80.0

    x_decibel = 10 * np.log10(np.maximum(x, amin))
    x_decibel = x_decibel - np.max(x_decibel, axis=(1,), keepdims=True)
    x_decibel_ref = np.maximum(x_decibel, -1 * dynamic_range)

    x_var = K.variable(x)
    x_decibel_kapre = amplitude_to_decibel(x_var, amin, dynamic_range)

    assert np.allclose(K.eval(x_decibel_kapre), x_decibel_ref, atol=TOL) 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:19,代碼來源:test_backend.py

示例2: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def build(self, input_shape):
        # Create mean and count
        # These are weights because just maintaining variables don't get saved with the model, and we'd like
        # to have these numbers saved when we save the model.
        # But we need to make sure that the weights are untrainable.
        self.mean = self.add_weight(name='mean', 
                                      shape=input_shape[1:],
                                      initializer='zeros',
                                      trainable=False)
        self.count = self.add_weight(name='count', 
                                      shape=[1],
                                      initializer='zeros',
                                      trainable=False)

        # self.mean = K.zeros(input_shape[1:], name='mean')
        # self.count = K.variable(0.0, name='count')
        super(MeanStream, self).build(input_shape)  # Be sure to call this somewhere! 
開發者ID:adalca,項目名稱:neuron,代碼行數:19,代碼來源:layers.py

示例3: init_neurons

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def init_neurons(self, input_shape):
        """Init layer neurons."""

        from snntoolbox.bin.utils import get_log_keys, get_plot_keys

        output_shape = self.compute_output_shape(input_shape)
        self.v_thresh = k.variable(self._v_thresh)
        self.mem = k.variable(self.init_membrane_potential(output_shape))
        self.time = k.variable(self.dt)
        # To save memory and computations, allocate only where needed:
        if self.tau_refrac > 0:
            self.refrac_until = k.zeros(output_shape)
        if any({'spiketrains', 'spikerates', 'correlation', 'spikecounts',
                'hist_spikerates_activations', 'operations',
                'synaptic_operations_b_t', 'neuron_operations_b_t',
                'spiketrains_n_b_l_t'} & (get_plot_keys(self.config) |
               get_log_keys(self.config))):
            self.spiketrain = k.zeros(output_shape)
        self.last_spiketimes = k.variable(-np.ones(output_shape)) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:21,代碼來源:ttfs.py

示例4: dice_weighted

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def dice_weighted(weights):
    weights = K.variable(weights)

    def weighted_loss(y_true, y_pred, smooth=0.00001):
        axis = identify_axis(y_true.get_shape())
        intersection = y_true * y_pred
        intersection = K.sum(intersection, axis=axis)
        y_true = K.sum(y_true, axis=axis)
        y_pred = K.sum(y_pred, axis=axis)
        dice = ((2 * intersection) + smooth) / (y_true + y_pred + smooth)
        dice = dice * weights
        return -dice
    return weighted_loss

#-----------------------------------------------------#
#              Dice & Crossentropy loss               #
#-----------------------------------------------------# 
開發者ID:frankkramer-lab,項目名稱:MIScnn,代碼行數:19,代碼來源:metrics.py

示例5: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def build(self, input_shape):
        self.n_ch = input_shape[1]
        self.len_src = input_shape[2]
        self.is_mono = self.n_ch == 1
        if self.image_data_format == 'channels_first':
            self.ch_axis_idx = 1
        else:
            self.ch_axis_idx = 3
        if self.len_src is not None:
            assert self.len_src >= self.n_dft, 'Hey! The input is too short!'

        self.n_frame = conv_output_length(self.len_src, self.n_dft, self.padding, self.n_hop)

        dft_real_kernels, dft_imag_kernels = backend.get_stft_kernels(self.n_dft)
        self.dft_real_kernels = K.variable(dft_real_kernels, dtype=K.floatx(), name="real_kernels")
        self.dft_imag_kernels = K.variable(dft_imag_kernels, dtype=K.floatx(), name="imag_kernels")
        # kernels shapes: (filter_length, 1, input_dim, nb_filter)?
        if self.trainable_kernel:
            self.trainable_weights.append(self.dft_real_kernels)
            self.trainable_weights.append(self.dft_imag_kernels)
        else:
            self.non_trainable_weights.append(self.dft_real_kernels)
            self.non_trainable_weights.append(self.dft_imag_kernels)

        super(Spectrogram, self).build(input_shape)
        # self.built = True 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:28,代碼來源:time_frequency.py

示例6: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def build(self, input_shape):
        if self.image_data_format == 'channels_first':
            self.n_ch = input_shape[1]
            self.n_freq = input_shape[2]
            self.n_time = input_shape[3]
        else:
            self.n_ch = input_shape[3]
            self.n_freq = input_shape[1]
            self.n_time = input_shape[2]

        if self.init == 'mel':
            self.filterbank = K.variable(
                backend.filterbank_mel(
                    sr=self.sr,
                    n_freq=self.n_freq,
                    n_mels=self.n_fbs,
                    fmin=self.fmin,
                    fmax=self.fmax,
                ).transpose(),
                dtype=K.floatx(),
            )
        elif self.init == 'log':
            self.filterbank = K.variable(
                backend.filterbank_log(
                    sr=self.sr,
                    n_freq=self.n_freq,
                    n_bins=self.n_fbs,
                    bins_per_octave=self.bins_per_octave,
                    fmin=self.fmin,
                ).transpose(),
                dtype=K.floatx(),
            )

        if self.trainable_fb:
            self.trainable_weights.append(self.filterbank)
        else:
            self.non_trainable_weights.append(self.filterbank)
        super(Filterbank, self).build(input_shape)
        self.built = True 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:41,代碼來源:filterbank.py

示例7: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False,
                 model=None, zero_penalties=True, batch_size=32,
                 total_iterations=0, total_iterations_wd=None,
                 use_cosine_annealing=False, lr_multipliers=None,
                 weight_decays=None, init_verbose=True,
                 eta_min=0, eta_max=1, t_cur=0, name="AdamW", **kwargs):
        if total_iterations > 1:
            weight_decays = _init_weight_decays(model, zero_penalties,
                                                weight_decays)
        eta_t = kwargs.pop('eta_t', 1.)

        super(AdamW, self).__init__(name, **kwargs)
        self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
        self._set_hyper('decay', self._initial_decay)
        self._set_hyper('beta_1', beta_1)
        self._set_hyper('beta_2', beta_2)

        self.eta_min = K.constant(eta_min, name='eta_min')
        self.eta_max = K.constant(eta_max, name='eta_max')
        self.eta_t = K.variable(eta_t, dtype='float32', name='eta_t')
        self.t_cur = K.variable(t_cur, dtype='int64', name='t_cur')
        self.batch_size = batch_size
        self.total_iterations = total_iterations
        self.total_iterations_wd = total_iterations_wd or total_iterations
        self.lr_multipliers = lr_multipliers
        self.weight_decays = weight_decays or {}
        self.init_verbose = init_verbose
        self.use_cosine_annealing = use_cosine_annealing
        self.epsilon = epsilon or backend_config.epsilon()
        self.amsgrad = amsgrad

        _check_args(self, total_iterations, use_cosine_annealing, weight_decays)
        self._init_lr = kwargs.get('lr', learning_rate)  # to print lr_mult setup
        self._updates_processed = 0  # to track num calls to '_resource_apply_...'
        self._init_notified = False
        self._init_lr = kwargs.get('lr', learning_rate) 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:39,代碼來源:optimizers_225tf.py

示例8: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def __init__(self, nb_labels,
                 weights=None,
                 input_type='prob',
                 dice_type='soft',
                 approx_hard_max=True,
                 vox_weights=None,
                 crop_indices=None,
                 re_norm=False,
                 area_reg=0.1):  # regularization for bottom of Dice coeff
        """
        input_type is 'prob', or 'max_label'
        dice_type is hard or soft
        approx_hard_max - see note below

        Note: for hard dice, we grab the most likely label and then compute a
        one-hot encoding for each voxel with respect to possible labels. To grab the most
        likely labels, argmax() can be used, but only when Dice is used as a metric
        For a Dice *loss*, argmax is not differentiable, and so we can't use it
        Instead, we approximate the prob->one_hot translation when approx_hard_max is True.
        """

        self.nb_labels = nb_labels
        self.weights = None if weights is None else K.variable(weights)
        self.vox_weights = None if vox_weights is None else K.variable(vox_weights)
        self.input_type = input_type
        self.dice_type = dice_type
        self.approx_hard_max = approx_hard_max
        self.area_reg = area_reg
        self.crop_indices = crop_indices
        self.re_norm = re_norm

        if self.crop_indices is not None and vox_weights is not None:
            self.vox_weights = utils.batch_gather(self.vox_weights, self.crop_indices) 
開發者ID:adalca,項目名稱:neuron,代碼行數:35,代碼來源:metrics.py

示例9: loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def loss(self, y_true, y_pred):
        total_loss = K.variable(0)
        for idx, loss in enumerate(self.losses):
            total_loss += self.loss_weights[idx] * loss(y_true, y_pred)
        return total_loss 
開發者ID:adalca,項目名稱:neuron,代碼行數:7,代碼來源:metrics.py

示例10: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def __init__(self, cap=100, **kwargs):
        self.cap = K.variable(cap, dtype='float32')
        super(MeanStream, self).__init__(**kwargs) 
開發者ID:adalca,項目名稱:neuron,代碼行數:5,代碼來源:layers.py

示例11: output_init

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def output_init(shape, name=None, dim_ordering=None):
    ''' initialization for output weights'''
    size = (shape[0], shape[1], shape[2] - shape[3], shape[3])

    # initialize output weights with random and identity
    rpart = np.random.random(size)
#     idpart_ = np.eye(size[3])
    idpart_ = np.ones((size[3], size[3]))
    idpart = np.expand_dims(np.expand_dims(idpart_, 0), 0)
    value = np.concatenate((rpart, idpart), axis=2)
    return K.variable(value, name=name) 
開發者ID:adalca,項目名稱:neuron,代碼行數:13,代碼來源:inits.py

示例12: softmax_ratio

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def softmax_ratio(y_true, y_pred):
    anchor, positive, negative = tf.unstack(y_pred)

    positive_distance = _euclidean_distance(anchor, positive)
    negative_distance = _euclidean_distance(anchor, negative)

    softmax = K.softmax(K.concatenate([positive_distance, negative_distance]))
    ideal_distance = K.variable([0, 1])
    return K.mean(K.maximum(softmax - ideal_distance, 0)) 
開發者ID:beringresearch,項目名稱:ivis,代碼行數:11,代碼來源:losses.py

示例13: softmax_ratio_pn

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def softmax_ratio_pn(y_true, y_pred):
    anchor, positive, negative = tf.unstack(y_pred)

    anchor_positive_distance = _euclidean_distance(anchor, positive)
    anchor_negative_distance = _euclidean_distance(anchor, negative)
    positive_negative_distance = _euclidean_distance(positive, negative)

    minimum_distance = K.min(K.concatenate([anchor_negative_distance, positive_negative_distance]), axis=-1, keepdims=True)

    softmax = K.softmax(K.concatenate([anchor_positive_distance, minimum_distance]))
    ideal_distance = K.variable([0, 1])
    return K.mean(K.maximum(softmax - ideal_distance, 0)) 
開發者ID:beringresearch,項目名稱:ivis,代碼行數:14,代碼來源:losses.py

示例14: get_time

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def get_time(self):
        """Get simulation time variable.

            Returns
            -------

            time: float
                Current simulation time.
            """

        return k.get_value(self.time) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:13,代碼來源:ttfs.py

示例15: set_time

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import variable [as 別名]
def set_time(self, time):
        """Set simulation time variable.

        Parameters
        ----------

        time: float
            Current simulation time.
        """

        k.set_value(self.time, time) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:13,代碼來源:ttfs.py


注:本文中的tensorflow.keras.backend.variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。