本文整理匯總了Python中tensorflow.keras.backend.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.sqrt方法的具體用法?Python backend.sqrt怎麽用?Python backend.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: distance_matrix
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def distance_matrix(self, D):
"""Calcuates the distance matrix from the distance tensor
B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features
Parameters
----------
D: tf.Tensor of shape (B, N, M, d)
Distance tensor.
Returns
-------
R: tf.Tensor of shape (B, N, M)
Distance matrix.
"""
R = tf.reduce_sum(tf.multiply(D, D), 3)
R = tf.sqrt(R)
return R
示例2: build
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def build(self, input_shape):
no_features = int(input_shape[0][2])
no_A = int(input_shape[1][2])
self.W = tf.Variable(
tf.random.truncated_normal(
[no_features * no_A, self.num_filters],
stddev=np.sqrt(1.0 / (no_features * (no_A + 1) * 1.0))),
name='weights',
dtype=tf.float32)
self.W_I = tf.Variable(
tf.random.truncated_normal(
[no_features, self.num_filters],
stddev=np.sqrt(1.0 / (no_features * (no_A + 1) * 1.0))),
name='weights_I',
dtype=tf.float32)
self.b = tf.Variable(tf.constant(0.1), name='bias', dtype=tf.float32)
self.built = True
示例3: loss
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def loss(self, y_true, y_pred):
# get the value for the true and fake images
disc_true = self.disc(y_true)
disc_pred = self.disc(y_pred)
# sample a x_hat by sampling along the line between true and pred
# z = tf.placeholder(tf.float32, shape=[None, 1])
# shp = y_true.get_shape()[0]
# WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!!
# self.batch_size does not work, since it's not None!!!
alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1])
diff = y_pred - y_true
interp = y_true + alpha * diff
# take gradient of D(x_hat)
gradients = K.gradients(self.disc(interp), [interp])[0]
grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1))
# compute loss
return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen
示例4: mcor
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def mcor(y_true, y_pred):
# matthews_correlation
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
numerator = (tp * tn - fp * fn)
denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return numerator / (denominator + K.epsilon())
示例5: mcor
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def mcor(y_true, y_pred):
# Matthews correlation
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
numerator = (tp * tn - fp * fn)
denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return numerator / (denominator + K.epsilon())
示例6: convert_sqrt
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def convert_sqrt(node, params, layers, lambda_func, node_name, keras_name):
"""
Convert Sqrt layer
:param node: current operation node
:param params: operation attributes
:param layers: available keras layers
:param lambda_func: function for keras Lambda layer
:param node_name: internal converter name
:param keras_name: resulting layer name
:return: None
"""
if len(node.input) != 1:
assert AttributeError('More than 1 input for sqrt layer.')
input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)
def target_layer(x):
import tensorflow.keras.backend as K
return K.sqrt(x)
lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
layers[node_name] = lambda_layer(input_0)
lambda_func[keras_name] = target_layer
示例7: _cosine_dist
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def _cosine_dist(x, y):
"""Computes the inner product (cosine distance) between two tensors.
Parameters
----------
x: tf.Tensor
Input Tensor
y: tf.Tensor
Input Tensor
"""
denom = (backend.sqrt(backend.sum(tf.square(x)) * backend.sum(tf.square(y))) +
backend.epsilon())
return backend.dot(x, tf.transpose(y)) / denom
示例8: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def call(self, inputs):
#To channels last
x = tf.transpose(inputs[0], [0, 3, 1, 2])
#Get weight and bias modulations
#Make sure w's shape is compatible with self.kernel
w = K.expand_dims(K.expand_dims(K.expand_dims(inputs[1], axis = 1), axis = 1), axis = -1)
#Add minibatch layer to weights
wo = K.expand_dims(self.kernel, axis = 0)
#Modulate
weights = wo * (w+1)
#Demodulate
if self.demod:
d = K.sqrt(K.sum(K.square(weights), axis=[1,2,3], keepdims = True) + 1e-8)
weights = weights / d
#Reshape/scale input
x = tf.reshape(x, [1, -1, x.shape[2], x.shape[3]]) # Fused => reshape minibatch to convolution groups.
w = tf.reshape(tf.transpose(weights, [1, 2, 3, 0, 4]), [weights.shape[1], weights.shape[2], weights.shape[3], -1])
x = tf.nn.conv2d(x, w,
strides=self.strides,
padding="SAME",
data_format="NCHW")
# Reshape/scale output.
x = tf.reshape(x, [-1, self.filters, x.shape[2], x.shape[3]]) # Fused => reshape convolution groups back to minibatch.
x = tf.transpose(x, [0, 2, 3, 1])
return x
示例9: earth_movers_distance
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def earth_movers_distance(y_true, y_pred):
cdf_true = K.cumsum(y_true, axis=-1)
cdf_pred = K.cumsum(y_pred, axis=-1)
emd = K.sqrt(K.mean(K.square(cdf_true - cdf_pred), axis=-1))
return K.mean(emd)
示例10: _euclidean_distance
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def _euclidean_distance(x, y):
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=-1, keepdims=True), K.epsilon()))
示例11: correlation_coefficient_loss
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den
r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)
示例12: angle_zyz_difference
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def angle_zyz_difference(ang1=np.zeros(3), ang2=np.zeros(3)):
loc1_r = np.zeros(ang1.shape)
loc2_r = np.zeros(ang2.shape)
rm1 = rotation_matrix_zyz(ang1)
rm2 = rotation_matrix_zyz(ang2)
loc1_r_t = np.array([loc1_r, loc1_r, loc1_r])
loc2_r_t = np.array([loc2_r, loc2_r, loc2_r])
dif_m = (rm1.dot(np.eye(3) - loc1_r_t)).transpose() - (rm2.dot(np.eye(3) - loc2_r_t)).transpose()
dif_d = math.sqrt(np.square(dif_m).sum())
return dif_d
示例13: _euclidian_dist
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def _euclidian_dist(self, x_pair: List[Tensor]) -> Tensor:
x1_norm = K.l2_normalize(x_pair[0], axis=1)
x2_norm = K.l2_normalize(x_pair[1], axis=1)
diff = x1_norm - x2_norm
square = K.square(diff)
_sum = K.sum(square, axis=1)
_sum = K.clip(_sum, min_value=1e-12, max_value=None)
dist = K.sqrt(_sum) / 2.
return dist
示例14: _pairwise_distances
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def _pairwise_distances(self, inputs: List[Tensor]) -> Tensor:
emb_c, emb_r = inputs
bs = K.shape(emb_c)[0]
embeddings = K.concatenate([emb_c, emb_r], 0)
dot_product = K.dot(embeddings, K.transpose(embeddings))
square_norm = K.batch_dot(embeddings, embeddings, axes=1)
distances = K.transpose(square_norm) - 2.0 * dot_product + square_norm
distances = distances[0:bs, bs:bs+bs]
distances = K.clip(distances, 0.0, None)
mask = K.cast(K.equal(distances, 0.0), K.dtype(distances))
distances = distances + mask * 1e-16
distances = K.sqrt(distances)
distances = distances * (1.0 - mask)
return distances
示例15: frn_layer_keras
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import sqrt [as 別名]
def frn_layer_keras(x, tau, beta, gamma, epsilon=1e-6):
# x: Input tensor of shape [BxHxWxC].
# tau, beta, gamma: Variables of shape [1, 1, 1, C].
# eps: A scalar constant or learnable variable.
# Compute the mean norm of activations per channel.
nu2 = K.mean(K.square(x), axis=[1, 2], keepdims=True)
# Perform FRN.
x = x * 1 / K.sqrt(nu2 + K.abs(epsilon))
# Return after applying the Offset-ReLU non-linearity.
return K.maximum(gamma * x + beta, tau)