當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.shape方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.shape方法的具體用法?Python backend.shape怎麽用?Python backend.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: split_heads_2d

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def split_heads_2d(self, ip):
        tensor_shape = K.shape(ip)

        # batch, height, width, channels for axis = -1
        tensor_shape = [tensor_shape[i] for i in range(len(self._shape))]

        batch = tensor_shape[0]
        height = tensor_shape[1]
        width = tensor_shape[2]
        channels = tensor_shape[3]

        # Save the spatial tensor dimensions
        self._batch = batch
        self._height = height
        self._width = width

        ret_shape = K.stack([batch, height, width,  self.num_heads, channels // self.num_heads])
        split = K.reshape(ip, ret_shape)
        transpose_axes = (0, 3, 1, 2, 4)
        split = K.permute_dimensions(split, transpose_axes)

        return split 
開發者ID:titu1994,項目名稱:keras-attention-augmented-convs,代碼行數:24,代碼來源:attn_augconv.py

示例2: relative_logits

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def relative_logits(self, q):
        shape = K.shape(q)
        # [batch, num_heads, H, W, depth_v]
        shape = [shape[i] for i in range(5)]

        height = shape[2]
        width = shape[3]

        rel_logits_w = self.relative_logits_1d(q, self.key_relative_w, height, width,
                                               transpose_mask=[0, 1, 2, 4, 3, 5])

        rel_logits_h = self.relative_logits_1d(
            K.permute_dimensions(q, [0, 1, 3, 2, 4]),
            self.key_relative_h, width, height,
            transpose_mask=[0, 1, 4, 2, 5, 3])

        return rel_logits_h, rel_logits_w 
開發者ID:titu1994,項目名稱:keras-attention-augmented-convs,代碼行數:19,代碼來源:attn_augconv.py

示例3: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def build(self, input_shape):
        assert isinstance(input_shape, list)
        F = input_shape[0][-1]

        if self.channels is None:
            self.channels = F

        self.kernel_emb = self.add_weight(shape=(F, self.channels),
                                          name='kernel_emb',
                                          initializer=self.kernel_initializer,
                                          regularizer=self.kernel_regularizer,
                                          constraint=self.kernel_constraint)

        self.kernel_pool = self.add_weight(shape=(F, self.k),
                                           name='kernel_pool',
                                           initializer=self.kernel_initializer,
                                           regularizer=self.kernel_regularizer,
                                           constraint=self.kernel_constraint)

        super().build(input_shape) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:22,代碼來源:diff_pool.py

示例4: loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def loss(self, y_true, y_pred):

        # get the value for the true and fake images
        disc_true = self.disc(y_true)
        disc_pred = self.disc(y_pred)

        # sample a x_hat by sampling along the line between true and pred
        # z = tf.placeholder(tf.float32, shape=[None, 1])
        # shp = y_true.get_shape()[0]
        # WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!!
        # self.batch_size does not work, since it's not None!!!
        alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1])
        diff = y_pred - y_true
        interp = y_true + alpha * diff

        # take gradient of D(x_hat)
        gradients = K.gradients(self.disc(interp), [interp])[0]
        grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1))

        # compute loss
        return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen 
開發者ID:adalca,項目名稱:neuron,代碼行數:23,代碼來源:metrics.py

示例5: _single_batch_trf

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def _single_batch_trf(self, vol):
        # vol should be vol_shape + [nb_features]
        # self.trf should be vol_shape + [nb_features] + [ndims]

        vol_shape = vol.shape.as_list()
        nb_input_dims = vol_shape[-1]

        # this is inefficient...
        new_vols = [None] * self.output_features
        for j in range(self.output_features):
            new_vols[j] = tf.zeros(vol_shape[:-1], dtype=tf.float32)
            for i in range(nb_input_dims):
                trf_vol = transform(vol[..., i], self.trf[..., i, j, :] * self.trf_mult, interp_method=self.interp_method)
                trf_vol = tf.reshape(trf_vol, vol_shape[:-1])
                new_vols[j] += trf_vol * self.mult[..., i, j]

                if self.use_bias:
                    new_vols[j] += self.bias[..., j]
        
        return tf.stack(new_vols, -1) 
開發者ID:adalca,項目名稱:neuron,代碼行數:22,代碼來源:layers.py

示例6: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def build(self, input_shape):
        # Create mean and count
        # These are weights because just maintaining variables don't get saved with the model, and we'd like
        # to have these numbers saved when we save the model.
        # But we need to make sure that the weights are untrainable.
        self.mean = self.add_weight(name='mean', 
                                      shape=input_shape[1:],
                                      initializer='zeros',
                                      trainable=False)
        self.count = self.add_weight(name='count', 
                                      shape=[1],
                                      initializer='zeros',
                                      trainable=False)

        # self.mean = K.zeros(input_shape[1:], name='mean')
        # self.count = K.variable(0.0, name='count')
        super(MeanStream, self).build(input_shape)  # Be sure to call this somewhere! 
開發者ID:adalca,項目名稱:neuron,代碼行數:19,代碼來源:layers.py

示例7: _mean_update

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def _mean_update(pre_mean, pre_count, x, pre_cap=None):

    # compute this batch stats
    this_sum = tf.reduce_sum(x, 0)
    this_bs = tf.cast(K.shape(x)[0], 'float32')  # this batch size
    
    # increase count and compute weights
    new_count = pre_count + this_bs
    alpha = this_bs/K.minimum(new_count, pre_cap)
    
    # compute new mean. Note that once we reach self.cap (e.g. 1000), the 'previous mean' matters less
    new_mean = pre_mean * (1-alpha) + (this_sum/this_bs) * alpha

    return (new_mean, new_count)

##########################################
## FFT Layers
########################################## 
開發者ID:adalca,項目名稱:neuron,代碼行數:20,代碼來源:layers.py

示例8: _generate_bert_mask

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def _generate_bert_mask(self, inputs):

        def _numpy_generate_contiguous_mask(array):
            mask = np.random.random(array.shape) < (1 / self.avg_seq_len)
            mask = np.cumsum(mask, 1)
            seqvals = np.max(mask)
            mask_prob = self.percentage * array.shape[1] / seqvals  # increase probability because fewer sequences
            vals_to_mask = np.arange(seqvals)[np.random.random((seqvals,)) < mask_prob]
            indices_to_mask = np.isin(mask, vals_to_mask)
            mask[indices_to_mask] = 1
            mask[~indices_to_mask] = 0

            return np.asarray(mask, np.bool)

        bert_mask = tf.py_func(_numpy_generate_contiguous_mask, [inputs], tf.bool)
        bert_mask.set_shape(inputs.shape)
        return bert_mask 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:19,代碼來源:RandomSequenceMask.py

示例9: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def call(self, inputs):
        """
        Args:
            sequence: tf.Tensor[int32] - Amino acid sequence,
                a padded tensor with shape [batch_size, MAX_PROTEIN_LENGTH]

            protein_length: tf.Tensor[int32] - Length of each protein in the sequence, a tensor with shape [batch_size]

        Output:
            amino_acid_probs: tf.Tensor[float32] - Probability of each type of amino acid,
                a tensor with shape [batch_size, MAX_PROTEIN_LENGTH, n_symbols]
        """

        sequence = inputs['primary']
        protein_length = inputs['protein_length']

        sequence_mask = rk.utils.convert_sequence_length_to_sequence_mask(
            sequence, protein_length)
        masked_sequence, bert_mask = self.bert_mask(sequence, sequence_mask)

        inputs['original_sequence'] = sequence
        inputs['primary'] = masked_sequence
        inputs['bert_mask'] = bert_mask

        return inputs 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:27,代碼來源:RandomSequenceMask.py

示例10: convert_sequence_vocab

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def convert_sequence_vocab(self, sequence):
        PFAM_TO_BEPLER_ENCODED = {encoding: UNIPROT_BEPLER.get(aa, 20) for aa, encoding in PFAM_VOCAB.items()}
        PFAM_TO_BEPLER_ENCODED[PFAM_VOCAB['<PAD>']] = 0

        def to_uniprot_bepler(seq):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, uniprot_encoding in PFAM_TO_BEPLER_ENCODED.items():
                new_seq[seq == pfam_encoding] = uniprot_encoding

            return new_seq

        new_sequence = tf.py_func(to_uniprot_bepler, [sequence], sequence.dtype)
        new_sequence.set_shape(sequence.shape)

        return new_sequence 
開發者ID:songlab-cal,項目名稱:tape-neurips2019,代碼行數:18,代碼來源:BeplerModel.py

示例11: sampling

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def sampling(args):
    """Reparameterization trick by sampling 
        fr an isotropic unit Gaussian.

    # Arguments:
        args (tensor): mean and log of variance of Q(z|X)

    # Returns:
        z (tensor): sampled latent vector
    """

    z_mean, z_log_var = args
    # K is the keras backend
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:20,代碼來源:vae-mlp-mnist-8.1.1.py

示例12: sampling

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def sampling(args):
    """Implements reparameterization trick by sampling
    from a gaussian with zero mean and std=1.

    Arguments:
        args (tensor): mean and log of variance of Q(z|X)

    Returns:
        sampled latent vector (tensor)
    """

    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:19,代碼來源:cvae-cnn-mnist-8.2.1.py

示例13: sampling

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def sampling(args):
    """Reparameterization trick by sampling 
        fr an isotropic unit Gaussian.

    # Arguments:
        args (tensor): mean and log of variance of Q(z|X)

    # Returns:
        z (tensor): sampled latent vector
    """

    z_mean, z_log_var = args
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:19,代碼來源:vae-cnn-mnist-8.1.2.py

示例14: build

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def build(self, input_shape):
        assert len(input_shape) == 3
        assert input_shape[0] == input_shape[1]
        assert input_shape[0][:-1] == input_shape[2][:-1]

        input_dim, features_dim = input_shape[0][-1], input_shape[2][-1]
        if self.use_intermediate_layer:
            self.first_kernel = self.add_weight(
                shape=(features_dim, self.intermediate_dim),
                initializer="random_uniform", name='first_kernel')
            self.first_bias = self.add_weight(
                shape=(self.intermediate_dim,),
                initializer="random_uniform", name='first_bias')
        self.features_kernel = self.add_weight(
            shape=(features_dim, 1), initializer="random_uniform", name='kernel')
        self.features_bias = self.add_weight(
            shape=(1,), initializer=Constant(self.bias_initializer), name='bias')
        if self.use_dimension_bias:
            self.dimensions_bias = self.add_weight(
                shape=(input_dim,), initializer="random_uniform", name='dimension_bias')
        super(WeightedCombinationLayer, self).build(input_shape) 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:23,代碼來源:cells.py

示例15: gather_indexes

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import shape [as 別名]
def gather_indexes(A: tf.Tensor, B: tf.Tensor) -> tf.Tensor:
    """
    Args:
        A: a tensor with data
        B: an integer tensor with indexes

    Returns:
        `answer` a tensor such that ``answer[i, j] = A[i, B[i, j]]``.
        In case `B` is one-dimensional, the output is ``answer[i] = A[i, B[i]]``

    """
    are_indexes_one_dim = (kb.ndim(B) == 1)
    if are_indexes_one_dim:
        B = tf.expand_dims(B, -1)
    first_dim_indexes = tf.expand_dims(tf.range(tf.shape(B)[0]), -1)
    first_dim_indexes = tf.tile(first_dim_indexes, [1, tf.shape(B)[1]])
    indexes = tf.stack([first_dim_indexes, B], axis=-1)
    answer = tf.gather_nd(A, indexes)
    if are_indexes_one_dim:
        answer = answer[:,0]
    return answer 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:23,代碼來源:network.py


注:本文中的tensorflow.keras.backend.shape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。