本文整理匯總了Python中tensorflow.keras.backend.set_session方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.set_session方法的具體用法?Python backend.set_session怎麽用?Python backend.set_session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.set_session方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
with graph.as_default():
if sess is not None:
set_session(sess)
inp = None
output = None
if self.shared_network is None:
inp = Input((self.input_dim,))
output = self.get_network_head(inp).output
else:
inp = self.shared_network.input
output = self.shared_network.output
output = Dense(
self.output_dim, activation=self.activation,
kernel_initializer='random_normal')(output)
self.model = Model(inp, output)
self.model.compile(
optimizer=SGD(lr=self.lr), loss=self.loss)
示例2: cpu_config
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def cpu_config(first=False):
# intel optimizations
num_cores, num_sockets = get_cpuinfo()
if first:
print("system info::")
print("Number of physical cores:: ", num_cores)
print("Number of sockets::", num_sockets)
backend.set_session(
tf.Session(
config=tf.ConfigProto(
intra_op_parallelism_threads=num_cores,
inter_op_parallelism_threads=num_sockets,
)
)
)
###########################################################
# Training
###########################################################
示例3: set_session
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def set_session(sess): pass
示例4: predict
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def predict(self, sample):
with self.lock:
with graph.as_default():
if sess is not None:
set_session(sess)
return self.model.predict(sample).flatten()
示例5: train_on_batch
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def train_on_batch(self, x, y):
loss = 0.
with self.lock:
with graph.as_default():
if sess is not None:
set_session(sess)
loss = self.model.train_on_batch(x, y)
return loss
示例6: get_shared_network
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def get_shared_network(cls, net='dnn', num_steps=1, input_dim=0):
with graph.as_default():
if sess is not None:
set_session(sess)
if net == 'dnn':
return DNN.get_network_head(Input((input_dim,)))
elif net == 'lstm':
return LSTMNetwork.get_network_head(
Input((num_steps, input_dim)))
elif net == 'cnn':
return CNN.get_network_head(
Input((1, num_steps, input_dim)))
示例7: _run
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def _run(FLAGS):
hparams = init_hparams(FLAGS)
init_random_seeds(hparams)
for run in range(hparams.copies):
log_start_of_run(FLAGS, hparams, run)
with tf.Session() as sess:
K.set_session(sess)
agent, checkpoint = init_agent(sess, hparams)
restored = checkpoint.restore()
if not restored:
sess.run(tf.global_variables_initializer())
if not hparams.test_only:
log_graph()
agent.clone_weights()
if hparams.num_workers == 1:
train(0, agent, hparams, checkpoint)
else:
workers = [
threading.Thread(
target=train, args=(worker_id, agent, hparams, checkpoint))
for worker_id in range(hparams.num_workers)
]
for worker in workers:
worker.start()
for worker in workers:
worker.join()
else:
test(hparams, agent)
hparams = init_hparams(FLAGS)
示例8: configure_gpus
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def configure_gpus(gpus):
# set gpu id and tf settings
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(g) for g in gpus])
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
K.set_session(tf.Session(config=config))
# loads a saved experiment using the saved parameters.
# runs all initialization steps so that we can use the models right away
示例9: run
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_session [as 別名]
def run(project_dir, gpu_mon, logger, args):
"""
Runs training of a model in a mpunet project directory.
Args:
project_dir: A path to a mpunet project
gpu_mon: An initialized GPUMonitor object
logger: A mpunet logging object
args: argparse arguments
"""
# Read in hyperparameters from YAML file
from mpunet.hyperparameters import YAMLHParams
hparams = YAMLHParams(project_dir + "/train_hparams.yaml", logger=logger)
validate_hparams(hparams)
# Wait for PID to terminate before continuing?
if args.wait_for:
from mpunet.utils import await_PIDs
await_PIDs(args.wait_for)
# Prepare sequence generators and potential model specific hparam changes
train, val, hparams = get_data_sequences(project_dir=project_dir,
hparams=hparams,
logger=logger,
args=args)
# Set GPU visibility and create model with MirroredStrategy
set_gpu(gpu_mon, args)
import tensorflow as tf
with tf.distribute.MirroredStrategy().scope():
model = get_model(project_dir=project_dir, train_seq=train,
hparams=hparams, logger=logger, args=args)
# Get trainer and compile model
from mpunet.train import Trainer
trainer = Trainer(model, logger=logger)
trainer.compile_model(n_classes=hparams["build"].get("n_classes"),
reduction=tf.keras.losses.Reduction.NONE,
**hparams["fit"])
# Debug mode?
if args.debug:
from tensorflow.python import debug as tfdbg
from tensorflow.keras import backend as K
K.set_session(tfdbg.LocalCLIDebugWrapperSession(K.get_session()))
# Fit the model
_ = trainer.fit(train=train, val=val,
train_im_per_epoch=args.train_images_per_epoch,
val_im_per_epoch=args.val_images_per_epoch,
hparams=hparams, no_im=args.no_images, **hparams["fit"])
save_final_weights(model, project_dir, logger)