當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.set_learning_phase方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.set_learning_phase方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.set_learning_phase方法的具體用法?Python backend.set_learning_phase怎麽用?Python backend.set_learning_phase使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.set_learning_phase方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def main(base_model_name, weights_file, export_path):
    # Load model and weights
    nima = Nima(base_model_name, weights=None)
    nima.build()
    nima.nima_model.load_weights(weights_file)

    # Tell keras that this will be used for making predictions
    K.set_learning_phase(0)

    # CustomObject required by MobileNet
    with CustomObjectScope({'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D}):
        builder = saved_model_builder.SavedModelBuilder(export_path)
        signature = predict_signature_def(
            inputs={'input_image': nima.nima_model.input},
            outputs={'quality_prediction': nima.nima_model.output}
        )

        builder.add_meta_graph_and_variables(
            sess=K.get_session(),
            tags=[tag_constants.SERVING],
            signature_def_map={'image_quality': signature}
        )
        builder.save()

    print(f'TF model exported to: {export_path}') 
開發者ID:idealo,項目名稱:image-quality-assessment,代碼行數:27,代碼來源:save_tfs_model.py

示例2: test_stochastic_ternary

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def test_stochastic_ternary(bound, alpha, temperature, expected_values, expected_scale):
  np.random.seed(42)
  K.set_learning_phase(1)

  n = 1000

  x = np.random.uniform(-bound, bound, size=(n, 10))
  x = np.sort(x, axis=1)

  s = stochastic_ternary(alpha=alpha, temperature=temperature)

  y = K.eval(s(K.constant(x)))
  scale = K.eval(s.scale).astype(np.float32)[0]

  ty = np.zeros_like(s)
  for i in range(n):
    ty = ty + (y[i] / scale)

  result = (ty/n).astype(np.float32)

  assert_allclose(result, expected_values, atol=0.1)
  assert_allclose(scale, expected_scale, rtol=0.1) 
開發者ID:google,項目名稱:qkeras,代碼行數:24,代碼來源:qactivation_test.py

示例3: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def __init__(self, model, shape):
        shape = (None, shape[0], shape[1], shape[2])
        x_name = 'image_tensor_x'
        with K.get_session() as sess:
            x_tensor = tf.placeholder(tf.float32, shape, x_name)
            K.set_learning_phase(0)
            y_tensor = model(x_tensor)
            y_name = [y_tensor[-1].name[:-2], y_tensor[-2].name[:-2]]
            graph = sess.graph.as_graph_def()
            graph0 = tf.graph_util.convert_variables_to_constants(sess, graph, y_name)
            graph1 = tf.graph_util.remove_training_nodes(graph0)

        self.x_name = [x_name]
        self.y_name = y_name
        self.frozen = graph1
        self.model = model 
開發者ID:csvance,項目名稱:keras-mobile-detectnet,代碼行數:18,代碼來源:model.py

示例4: test_stochastic_round_quantized_po2

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def test_stochastic_round_quantized_po2(test_values, expected_values):
  K.set_learning_phase(1)
  np.random.seed(666)
  x = K.placeholder(ndim=2) 
  q = quantized_po2(use_stochastic_rounding=True)
  f = K.function([x], [q(x)])
  res = f([test_values])[0]
  res = np.average(res)
  assert_allclose(res, expected_values, rtol=1e-01, atol=1e-6) 
開發者ID:google,項目名稱:qkeras,代碼行數:11,代碼來源:qactivation_test.py

示例5: test_stochastic_round_quantized_relu_po2

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def test_stochastic_round_quantized_relu_po2(test_values, expected_values):
  K.set_learning_phase(1)
  np.random.seed(666)
  x = K.placeholder(ndim=2)
  q = quantized_relu_po2(use_stochastic_rounding=True)
  f = K.function([x], [q(x)])
  res = f([test_values])[0]
  res = np.average(res)
  assert_allclose(res, expected_values, rtol=1e-01, atol=1e-6) 
開發者ID:google,項目名稱:qkeras,代碼行數:11,代碼來源:qactivation_test.py

示例6: test_stochastic_binary

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def test_stochastic_binary():
  np.random.seed(42)
  K.set_learning_phase(1)

  x = np.random.uniform(-0.01, 0.01, size=10)
  x = np.sort(x)

  s = stochastic_binary(alpha="auto_po2")

  ty = np.zeros_like(s)
  ts = 0.0

  n = 1000

  for _ in range(n):
    y = K.eval(s(K.constant(x)))
    scale = K.eval(s.scale)[0]
    ts = ts + scale
    ty = ty + (y / scale)

  result = (ty/n).astype(np.float32)
  scale = np.array([ts/n])

  expected = np.array(
      [-1., -1., -1., -0.852, 0.782, 0.768, 0.97, 0.978, 1.0, 1.0]
  ).astype(np.float32)
  expected_scale = np.array([0.003906])

  assert_allclose(result, expected, atol=0.1)
  assert_allclose(scale, expected_scale, rtol=0.1) 
開發者ID:google,項目名稱:qkeras,代碼行數:32,代碼來源:qactivation_test.py

示例7: test_stochastic_binary_inference_mode

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def test_stochastic_binary_inference_mode(alpha, test_values, expected_values):
  K.set_learning_phase(0)
  x = K.placeholder(ndim=2)
  q = stochastic_binary(alpha)
  f = K.function([x], [q(x)])
  result = f([test_values])[0]
  assert_allclose(result, expected_values, rtol=1e-05) 
開發者ID:google,項目名稱:qkeras,代碼行數:9,代碼來源:qactivation_test.py

示例8: _store_keras

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def _store_keras(self, name):

        K.set_learning_phase(0)  # necessary to prevent model from modifying weights
        model_json = self.artifact.to_json()
        with open(os.path.join(self.model_path, name + '.json'), 'w') as json_file:
            json_file.write(model_json)

        self.artifact.save_weights(os.path.join(self.model_path, name + '.h5'))
        _logger.info("Saved Keras model to disk") 
開發者ID:carlomazzaferro,項目名稱:kryptoflow,代碼行數:11,代碼來源:model.py

示例9: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def __init__(self, **kwargs):
        super(YOLO_np, self).__init__()
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = get_classes(self.classes_path)
        self.anchors = get_anchors(self.anchors_path)
        self.colors = get_colors(self.class_names)
        K.set_learning_phase(0)
        self.yolo_model = self._generate_model() 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:11,代碼來源:yolo.py

示例10: load_eval_model

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def load_eval_model(model_path):
    # support of tflite model
    if model_path.endswith('.tflite'):
        from tensorflow.lite.python import interpreter as interpreter_wrapper
        model = interpreter_wrapper.Interpreter(model_path=model_path)
        model.allocate_tensors()
        model_format = 'TFLITE'

    # support of MNN model
    elif model_path.endswith('.mnn'):
        model = MNN.Interpreter(model_path)
        model_format = 'MNN'

    # support of TF 1.x frozen pb model
    elif model_path.endswith('.pb'):
        model = load_graph(model_path)
        model_format = 'PB'

    # support of ONNX model
    elif model_path.endswith('.onnx'):
        model = onnxruntime.InferenceSession(model_path)
        model_format = 'ONNX'

    # normal keras h5 model
    elif model_path.endswith('.h5'):
        custom_object_dict = get_custom_objects()

        model = load_model(model_path, compile=False, custom_objects=custom_object_dict)
        model_format = 'H5'
        K.set_learning_phase(0)
    else:
        raise ValueError('invalid model file')

    return model, model_format 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:36,代碼來源:eval.py

示例11: main

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def main(args):
    include_top = True
    if args.dump_headless:
        include_top = False

    # prepare model
    model, input_shape = get_model(args.model_type, include_top=include_top)
    if args.weights_path:
        model.load_weights(args.weights_path, by_name=True)
    # support multi-gpu training
    if args.gpu_num >= 2:
        model = multi_gpu_model(model, gpus=args.gpu_num)
    model.summary()

    if args.evaluate:
        K.set_learning_phase(0)
        evaluate_model(args, model, input_shape)
    elif args.verify_with_image:
        K.set_learning_phase(0)
        verify_with_image(model, input_shape)
    elif args.dump_headless:
        K.set_learning_phase(0)
        model.save(args.output_model_file)
        print('export headless model to %s' % str(args.output_model_file))
    else:
        train(args, model, input_shape) 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:28,代碼來源:train_imagenet.py

示例12: dump_saved_model

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import set_learning_phase [as 別名]
def dump_saved_model(self, saved_model_path):
        model = self.inference_model
        os.makedirs(saved_model_path, exist_ok=True)

        tf.keras.experimental.export_saved_model(model, saved_model_path)
        print('export inference model to %s' % str(saved_model_path))


#class YOLO_prenms(object):
    #_defaults = default_config

    #@classmethod
    #def get_defaults(cls, n):
        #if n in cls._defaults:
            #return cls._defaults[n]
        #else:
            #return "Unrecognized attribute name '" + n + "'"

    #def __init__(self, **kwargs):
        #super(YOLO_prenms, self).__init__()
        #self.__dict__.update(self._defaults) # set up default values
        #self.__dict__.update(kwargs) # and update with user overrides
        #self.class_names = get_classes(self.classes_path)
        #self.anchors = get_anchors(self.anchors_path)
        #self.colors = get_colors(self.class_names)
        #K.set_learning_phase(0)
        #self.prenms_model = self._generate_model()

    #def _generate_model(self):
        #'''to generate the bounding boxes'''
        #weights_path = os.path.expanduser(self.weights_path)
        #assert weights_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        ## Load model, or construct model and load weights.
        #num_anchors = len(self.anchors)
        #num_classes = len(self.class_names)
        ##YOLOv3 model has 9 anchors and 3 feature layers but
        ##Tiny YOLOv3 model has 6 anchors and 2 feature layers,
        ##so we can calculate feature layers number to get model type
        #num_feature_layers = num_anchors//3

        #prenms_model = get_yolo3_prenms_model(self.model_type, self.anchors, num_classes, weights_path=weights_path, input_shape=self.model_image_size + (3,))

        #return prenms_model


    #def dump_model_file(self, output_model_file):
        #self.prenms_model.save(output_model_file)

    #def dump_saved_model(self, saved_model_path):
        #model = self.prenms_model
        #os.makedirs(saved_model_path, exist_ok=True)

        #tf.keras.experimental.export_saved_model(model, saved_model_path)
        #print('export inference model to %s' % str(saved_model_path)) 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:57,代碼來源:yolo.py


注:本文中的tensorflow.keras.backend.set_learning_phase方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。