本文整理匯總了Python中tensorflow.keras.backend.ndim方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.ndim方法的具體用法?Python backend.ndim怎麽用?Python backend.ndim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.ndim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: amplitude_to_decibel
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def amplitude_to_decibel(x, amin=1e-10, dynamic_range=80.0):
"""[K] Convert (linear) amplitude to decibel (log10(x)).
Parameters
----------
x: Keras *batch* tensor or variable. It has to be batch because of sample-wise `K.max()`.
amin: minimum amplitude. amplitude smaller than `amin` is set to this.
dynamic_range: dynamic_range in decibel
"""
log_spec = 10 * K.log(K.maximum(x, amin)) / np.log(10).astype(K.floatx())
if K.ndim(x) > 1:
axis = tuple(range(K.ndim(x))[1:])
else:
axis = None
log_spec = log_spec - K.max(log_spec, axis=axis, keepdims=True) # [-?, 0]
log_spec = K.maximum(log_spec, -1 * dynamic_range) # [-80, 0]
return log_spec
示例2: autodetect_mode
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def autodetect_mode(a, b):
"""
Return a code identifying the mode of operation (single, mixed, inverted mixed and
batch), given a and b. See `ops.modes` for meaning of codes.
:param a: Tensor or SparseTensor.
:param b: Tensor or SparseTensor.
:return: mode of operation as an integer code.
"""
a_dim = K.ndim(a)
b_dim = K.ndim(b)
if b_dim == 2:
if a_dim == 2:
return SINGLE
elif a_dim == 3:
return iMIXED
elif b_dim == 3:
if a_dim == 2:
return MIXED
elif a_dim == 3:
return BATCH
return UNKNOWN
示例3: matmul_AT_B
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def matmul_AT_B(a, b):
"""
Computes A.T * B, dealing automatically with sparsity and data modes.
:param a: Tensor or SparseTensor with rank 2 or 3.
:param b: Tensor or SparseTensor with rank 2 or 3.
:return: Tensor or SparseTensor with rank = max(rank(a), rank(b)).
"""
mode = modes.autodetect_mode(a, b)
if mode == modes.SINGLE or mode == modes.MIXED:
# Single (rank(a)=2, rank(b)=2)
# Mixed (rank(a)=2, rank(b)=3)
a_t = ops.transpose(a)
elif mode == modes.iMIXED or mode == modes.BATCH:
# Inverted mixed (rank(a)=3, rank(b)=2)
# Batch (rank(a)=3, rank(b)=3)
a_t = ops.transpose(a, (0, 2, 1))
else:
raise ValueError('Expected ranks to be 2 or 3, got {} and {}'.format(
K.ndim(a), K.ndim(b)
))
return matmul_A_B(a_t, b)
示例4: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def call(self, inputs):
if self.data_mode == 'disjoint':
X, I = inputs
if K.ndim(I) == 2:
I = I[:, 0]
else:
X = inputs
inputs_linear = self.features_layer(X)
attn = self.attention_layer(X)
masked_inputs = inputs_linear * attn
if self.data_mode in {'single', 'batch'}:
output = K.sum(masked_inputs, axis=-2,
keepdims=self.data_mode == 'single')
else:
output = tf.math.segment_sum(masked_inputs, I)
return output
示例5: _softmax
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def _softmax(x, axis=-1, alpha=1):
"""
building on keras implementation, with additional alpha parameter
Softmax activation function.
# Arguments
x : Tensor.
axis: Integer, axis along which the softmax normalization is applied.
alpha: a value to multiply all x
# Returns
Tensor, output of softmax transformation.
# Raises
ValueError: In case `dim(x) == 1`.
"""
x = alpha * x
ndim = K.ndim(x)
if ndim == 2:
return K.softmax(x)
elif ndim > 2:
e = K.exp(x - K.max(x, axis=axis, keepdims=True))
s = K.sum(e, axis=axis, keepdims=True)
return e / s
else:
raise ValueError('Cannot apply softmax to a tensor that is 1D')
示例6: sequence_masking
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def sequence_masking(x, mask, mode=0, axis=None):
"""為序列條件mask的函數
mask: 形如(batch_size, seq_len)的0-1矩陣;
mode: 如果是0,則直接乘以mask;
如果是1,則在padding部分減去一個大正數。
axis: 序列所在軸,默認為1;
"""
if mask is None or mode not in [0, 1]:
return x
else:
if axis is None:
axis = 1
if axis == -1:
axis = K.ndim(x) - 1
assert axis > 0, 'axis muse be greater than 0'
for _ in range(axis - 1):
mask = K.expand_dims(mask, 1)
for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 0:
return x * mask
else:
return x - (1 - mask) * 1e12
示例7: _fftshift
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def _fftshift(self, x, axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like, Tensor
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : Tensor.
"""
if axes is None:
axes = tuple(range(ndim(x)))
shift = [dim // 2 for dim in tf.shape(x)]
elif isinstance(axes, int):
shift = tf.shape(x)[axes] // 2
else:
shift = [tf.shape(x)[ax] // 2 for ax in axes]
return _roll(x, shift, axes)
示例8: _ifftshift
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def _ifftshift(self, x, axes=None):
"""
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like, Tensor.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : Tensor.
"""
if axes is None:
axes = tuple(range(ndim(x)))
shift = [-(dim // 2) for dim in tf.shape(x)]
elif isinstance(axes, int):
shift = -(tf.shape(x)[axes] // 2)
else:
shift = [-(tf.shape(x)[ax] // 2) for ax in axes]
return _roll(x, shift, axes)
示例9: cat_acc
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def cat_acc(y_true, y_pred):
"""Keras loss function for sparse_categorical_accuracy.
:param y_true: tensor of true class labels.
:param y_pred: class output scores from network.
:returns: categorical accuracy.
"""
# sparse_categorical_accuracy is broken in keras 2.2.4
# https://github.com/keras-team/keras/issues/11348#issuecomment-439969957
# this is taken from e59570ae
from tensorflow.keras import backend as K
# reshape in case it's in shape (num_samples, 1) instead of (num_samples,)
if K.ndim(y_true) == K.ndim(y_pred):
y_true = K.squeeze(y_true, -1)
# convert dense predictions to labels
y_pred_labels = K.argmax(y_pred, axis=-1)
y_pred_labels = K.cast(y_pred_labels, K.floatx())
return K.cast(K.equal(y_true, y_pred_labels), K.floatx())
示例10: gather_indexes
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def gather_indexes(A: tf.Tensor, B: tf.Tensor) -> tf.Tensor:
"""
Args:
A: a tensor with data
B: an integer tensor with indexes
Returns:
`answer` a tensor such that ``answer[i, j] = A[i, B[i, j]]``.
In case `B` is one-dimensional, the output is ``answer[i] = A[i, B[i]]``
"""
are_indexes_one_dim = (kb.ndim(B) == 1)
if are_indexes_one_dim:
B = tf.expand_dims(B, -1)
first_dim_indexes = tf.expand_dims(tf.range(tf.shape(B)[0]), -1)
first_dim_indexes = tf.tile(first_dim_indexes, [1, tf.shape(B)[1]])
indexes = tf.stack([first_dim_indexes, B], axis=-1)
answer = tf.gather_nd(A, indexes)
if are_indexes_one_dim:
answer = answer[:,0]
return answer
示例11: normalize_A
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def normalize_A(A):
"""
Computes symmetric normalization of A, dealing with sparse A and batch mode
automatically.
:param A: Tensor or SparseTensor with rank k = {2, 3}.
:return: Tensor or SparseTensor of rank k.
"""
D = degrees(A)
D = tf.sqrt(D)[:, None] + K.epsilon()
perm = (0, 2, 1) if K.ndim(A) == 3 else (1, 0)
output = (A / D) / ops.transpose(D, perm=perm)
return output
示例12: degree_matrix
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def degree_matrix(A, return_sparse_batch=False):
"""
Computes the degree matrix of A, deals with sparse A and batch mode
automatically.
:param A: Tensor or SparseTensor with rank k = {2, 3}.
:param return_sparse_batch: if operating in batch mode, return a
SparseTensor. Note that the sparse degree Tensor returned by this function
cannot be used for sparse matrix multiplication afterwards.
:return: SparseTensor of rank k.
"""
D = degrees(A)
batch_mode = K.ndim(D) == 2
N = tf.shape(D)[-1]
batch_size = tf.shape(D)[0] if batch_mode else 1
inner_index = tf.tile(tf.stack([tf.range(N)] * 2, axis=1), (batch_size, 1))
if batch_mode:
if return_sparse_batch:
outer_index = ops.repeat(
tf.range(batch_size), tf.ones(batch_size) * tf.cast(N, tf.float32)
)
indices = tf.concat([outer_index[:, None], inner_index], 1)
dense_shape = (batch_size, N, N)
else:
return tf.linalg.diag(D)
else:
indices = inner_index
dense_shape = (N, N)
indices = tf.cast(indices, tf.int64)
values = tf.reshape(D, (-1,))
return tf.SparseTensor(indices, values, dense_shape)
示例13: dot
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def dot(a, b, transpose_a=False, transpose_b=False):
"""
Dot product between `a` and `b`, with automatic handling of batch dimensions.
Supports both dense and sparse multiplication (including sparse-sparse).
The innermost dimension of `a` must match the outermost dimension of `b`,
unless there is a shared batch dimension.
Note that doing sparse-sparse multiplication of any rank and sparse-dense
multiplication with rank higher than 2 may result in slower computations.
:param a: Tensor or SparseTensor with rank 2 or 3.
:param b: Tensor or SparseTensor with rank 2 or 3.
:param transpose_a: bool, transpose innermost two dimensions of a.
:param transpose_b: bool, transpose innermost two dimensions of b.
:return: Tensor or SparseTensor with rank 2 or 3.
"""
a_is_sparse_tensor = isinstance(a, tf.SparseTensor)
b_is_sparse_tensor = isinstance(b, tf.SparseTensor)
# Handle case where we can use faster sparse-dense matmul
if K.ndim(a) == 2 and K.ndim(b) == 2:
if transpose_a:
a = ops.transpose(a)
if transpose_b:
b = ops.transpose(b)
if a_is_sparse_tensor and not b_is_sparse_tensor:
return tf.sparse.sparse_dense_matmul(a, b)
elif not a_is_sparse_tensor and b_is_sparse_tensor:
return ops.transpose(
tf.sparse.sparse_dense_matmul(ops.transpose(b), ops.transpose(a))
)
# Fallthrough to tfsp implementation
# Defaults to tf.matmul if neither is sparse
if a_is_sparse_tensor:
a = tfsp.CSRSparseMatrix(a)
if b_is_sparse_tensor:
b = tfsp.CSRSparseMatrix(b)
out = tfsp.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b)
if hasattr(out, 'to_sparse_tensor'):
return out.to_sparse_tensor()
return out
示例14: get_inputs
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def get_inputs(inputs):
if len(inputs) == 3:
X, A, E = inputs
assert K.ndim(E) == 2, 'E must have rank 2'
elif len(inputs) == 2:
X, A = inputs
E = None
else:
raise ValueError('Expected 2 or 3 inputs tensors (X, A, E), got {}.'
.format(len(inputs)))
assert K.ndim(X) == 2, 'X must have rank 2'
assert K.is_sparse(A), 'A must be a SparseTensor'
assert K.ndim(A) == 2, 'A must have rank 2'
return X, A, E
示例15: __init__
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import ndim [as 別名]
def __init__(self, filters,
kernel_size,
strides=(1, 1, 1),
padding='valid',
data_format=None,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(LocallyConnected3D, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = conv_utils.normalize_tuple(
kernel_size, 3, 'kernel_size')
self.strides = conv_utils.normalize_tuple(strides, 3, 'strides')
self.padding = conv_utils.normalize_padding(padding)
if self.padding != 'valid':
raise ValueError('Invalid border mode for LocallyConnected3D '
'(only "valid" is supported): ' + padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=5)