本文整理匯總了Python中tensorflow.keras.backend.maximum方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.maximum方法的具體用法?Python backend.maximum怎麽用?Python backend.maximum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.maximum方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: amplitude_to_decibel
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def amplitude_to_decibel(x, amin=1e-10, dynamic_range=80.0):
"""[K] Convert (linear) amplitude to decibel (log10(x)).
Parameters
----------
x: Keras *batch* tensor or variable. It has to be batch because of sample-wise `K.max()`.
amin: minimum amplitude. amplitude smaller than `amin` is set to this.
dynamic_range: dynamic_range in decibel
"""
log_spec = 10 * K.log(K.maximum(x, amin)) / np.log(10).astype(K.floatx())
if K.ndim(x) > 1:
axis = tuple(range(K.ndim(x))[1:])
else:
axis = None
log_spec = log_spec - K.max(log_spec, axis=axis, keepdims=True) # [-?, 0]
log_spec = K.maximum(log_spec, -1 * dynamic_range) # [-80, 0]
return log_spec
示例2: get_psp
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def get_psp(self, output_spikes):
new_spiketimes = tf.where(k.greater(output_spikes, 0),
k.ones_like(output_spikes) * self.time,
self.last_spiketimes)
new_spiketimes = tf.where(k.less(output_spikes, 0),
k.zeros_like(output_spikes) * self.time,
new_spiketimes)
assign_new_spiketimes = tf.assign(self.last_spiketimes,
new_spiketimes)
with tf.control_dependencies([assign_new_spiketimes]):
last_spiketimes = self.last_spiketimes + 0 # Dummy op
# psp = k.maximum(0., tf.divide(self.dt, last_spiketimes))
psp = tf.where(k.greater(last_spiketimes, 0),
k.ones_like(output_spikes) * self.dt,
k.zeros_like(output_spikes))
return psp
示例3: _hard_max
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def _hard_max(tens, axis):
"""
we can't use the argmax function in a loss, as it's not differentiable
We can use it in a metric, but not in a loss function
therefore, we replace the 'hard max' operation (i.e. argmax + onehot)
with this approximation
"""
tensmax = K.max(tens, axis=axis, keepdims=True)
eps_hot = K.maximum(tens - tensmax + K.epsilon(), 0)
one_hot = eps_hot / K.epsilon()
return one_hot
示例4: triplet_loss
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def triplet_loss(y_true, y_pred, alpha=0.4):
"""
https://github.com/KinWaiCheuk/Triplet-net-keras/blob/master/Triplet%20NN%20Test%20on%20MNIST.ipynb
Implementation of the triplet loss function
Arguments:
y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
y_pred -- python list containing three objects:
anchor -- the encodings for the anchor data
positive -- the encodings for the positive data (similar to anchor)
negative -- the encodings for the negative data (different from anchor)
Returns:
loss -- real number, value of the loss
"""
total_lenght = y_pred.shape.as_list()[-1]
anchor = y_pred[:, 0:int(total_lenght * 1 / 3)]
positive = y_pred[:, int(total_lenght * 1 / 3):int(total_lenght * 2 / 3)]
negative = y_pred[:, int(total_lenght * 2 / 3):int(total_lenght * 3 / 3)]
# distance between the anchor and the positive
pos_dist = K.sum(K.square(anchor - positive), axis=1)
# distance between the anchor and the negative
neg_dist = K.sum(K.square(anchor - negative), axis=1)
# compute loss
basic_loss = pos_dist - neg_dist + alpha
loss = K.maximum(basic_loss, 0.0)
return loss
示例5: correlation_coefficient_loss
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def correlation_coefficient_loss(y_true, y_pred):
x = y_true
y = y_pred
mx = K.mean(x)
my = K.mean(y)
xm, ym = x-mx, y-my
r_num = K.sum(tf.multiply(xm,ym))
r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
r = r_num / r_den
r = K.maximum(K.minimum(r, 1.0), -1.0)
return 1 - K.square(r)
示例6: softmax_focal_loss
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def softmax_focal_loss(y_true, y_pred, gamma=2.0, alpha=0.25):
"""
Compute softmax focal loss.
Reference Paper:
"Focal Loss for Dense Object Detection"
https://arxiv.org/abs/1708.02002
# Arguments
y_true: Ground truth targets,
tensor of shape (?, num_boxes, num_classes).
y_pred: Predicted logits,
tensor of shape (?, num_boxes, num_classes).
gamma: exponent of the modulating factor (1 - p_t) ^ gamma.
alpha: optional alpha weighting factor to balance positives vs negatives.
# Returns
softmax_focal_loss: Softmax focal loss, tensor of shape (?, num_boxes).
"""
# Scale predictions so that the class probas of each sample sum to 1
#y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
# Clip the prediction value to prevent NaN's and Inf's
#epsilon = K.epsilon()
#y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
y_pred = tf.nn.softmax(y_pred)
y_pred = tf.maximum(tf.minimum(y_pred, 1 - 1e-15), 1e-15)
# Calculate Cross Entropy
cross_entropy = -y_true * tf.math.log(y_pred)
# Calculate Focal Loss
softmax_focal_loss = alpha * tf.pow(1 - y_pred, gamma) * cross_entropy
return softmax_focal_loss
示例7: box_iou
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_iou(b1, b2):
"""
Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
"""
# Expand dim to apply broadcasting.
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
示例8: box_iou
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_iou(b1, b2):
"""
Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
"""
# Expand dim to apply broadcasting.
#b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
示例9: frn_layer_paper
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def frn_layer_paper(x, tau, beta, gamma, epsilon=1e-6):
# x: Input tensor of shape [BxHxWxC].
# tau, beta, gamma: Variables of shape [1, 1, 1, C].
# eps: A scalar constant or learnable variable.
# Compute the mean norm of activations per channel.
nu2 = tf.reduce_mean(tf.square(x), axis=[1, 2], keepdims=True)
# Perform FRN.
x = x * tf.math.rsqrt(nu2 + tf.abs(epsilon))
# Return after applying the Offset-ReLU non-linearity.
return tf.maximum(gamma * x + beta, tau)
示例10: frn_layer_keras
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def frn_layer_keras(x, tau, beta, gamma, epsilon=1e-6):
# x: Input tensor of shape [BxHxWxC].
# tau, beta, gamma: Variables of shape [1, 1, 1, C].
# eps: A scalar constant or learnable variable.
# Compute the mean norm of activations per channel.
nu2 = K.mean(K.square(x), axis=[1, 2], keepdims=True)
# Perform FRN.
x = x * 1 / K.sqrt(nu2 + K.abs(epsilon))
# Return after applying the Offset-ReLU non-linearity.
return K.maximum(gamma * x + beta, tau)
示例11: dice
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def dice(self, y_true, y_pred):
"""
compute dice for given Tensors
"""
if self.crop_indices is not None:
y_true = utils.batch_gather(y_true, self.crop_indices)
y_pred = utils.batch_gather(y_pred, self.crop_indices)
if self.input_type == 'prob':
# We assume that y_true is probabilistic, but just in case:
if self.re_norm:
y_true = tf.div_no_nan(y_true, K.sum(y_true, axis=-1, keepdims=True))
y_true = K.clip(y_true, K.epsilon(), 1)
# make sure pred is a probability
if self.re_norm:
y_pred = tf.div_no_nan(y_pred, K.sum(y_pred, axis=-1, keepdims=True))
y_pred = K.clip(y_pred, K.epsilon(), 1)
# Prepare the volumes to operate on
# If we're doing 'hard' Dice, then we will prepare one-hot-based matrices of size
# [batch_size, nb_voxels, nb_labels], where for each voxel in each batch entry,
# the entries are either 0 or 1
if self.dice_type == 'hard':
# if given predicted probability, transform to "hard max""
if self.input_type == 'prob':
if self.approx_hard_max:
y_pred_op = _hard_max(y_pred, axis=-1)
y_true_op = _hard_max(y_true, axis=-1)
else:
y_pred_op = _label_to_one_hot(K.argmax(y_pred, axis=-1), self.nb_labels)
y_true_op = _label_to_one_hot(K.argmax(y_true, axis=-1), self.nb_labels)
# if given predicted label, transform to one hot notation
else:
assert self.input_type == 'max_label'
y_pred_op = _label_to_one_hot(y_pred, self.nb_labels)
y_true_op = _label_to_one_hot(y_true, self.nb_labels)
# If we're doing soft Dice, require prob output, and the data already is as we need it
# [batch_size, nb_voxels, nb_labels]
else:
assert self.input_type == 'prob', "cannot do soft dice with max_label input"
y_pred_op = y_pred
y_true_op = y_true
# reshape to [batch_size, nb_voxels, nb_labels]
batch_size = K.shape(y_true)[0]
y_pred_op = K.reshape(y_pred_op, [batch_size, -1, K.shape(y_true)[-1]])
y_true_op = K.reshape(y_true_op, [batch_size, -1, K.shape(y_true)[-1]])
# compute dice for each entry in batch.
# dice will now be [batch_size, nb_labels]
top = 2 * K.sum(y_true_op * y_pred_op, 1)
bottom = K.sum(K.square(y_true_op), 1) + K.sum(K.square(y_pred_op), 1)
# make sure we have no 0s on the bottom. K.epsilon()
bottom = K.maximum(bottom, self.area_reg)
return top / bottom
示例12: box_giou
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_giou(b_true, b_pred):
"""
Calculate GIoU loss on anchor boxes
Reference Paper:
"Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression"
https://arxiv.org/abs/1902.09630
Parameters
----------
b_true: GT boxes tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
b_pred: predict boxes tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
Returns
-------
giou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
"""
b_true_xy = b_true[..., :2]
b_true_wh = b_true[..., 2:4]
b_true_wh_half = b_true_wh/2.
b_true_mins = b_true_xy - b_true_wh_half
b_true_maxes = b_true_xy + b_true_wh_half
b_pred_xy = b_pred[..., :2]
b_pred_wh = b_pred[..., 2:4]
b_pred_wh_half = b_pred_wh/2.
b_pred_mins = b_pred_xy - b_pred_wh_half
b_pred_maxes = b_pred_xy + b_pred_wh_half
intersect_mins = K.maximum(b_true_mins, b_pred_mins)
intersect_maxes = K.minimum(b_true_maxes, b_pred_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b_true_area = b_true_wh[..., 0] * b_true_wh[..., 1]
b_pred_area = b_pred_wh[..., 0] * b_pred_wh[..., 1]
union_area = b_true_area + b_pred_area - intersect_area
# calculate IoU, add epsilon in denominator to avoid dividing by 0
iou = intersect_area / (union_area + K.epsilon())
# get enclosed area
enclose_mins = K.minimum(b_true_mins, b_pred_mins)
enclose_maxes = K.maximum(b_true_maxes, b_pred_maxes)
enclose_wh = K.maximum(enclose_maxes - enclose_mins, 0.0)
enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
# calculate GIoU, add epsilon in denominator to avoid dividing by 0
giou = iou - 1.0 * (enclose_area - union_area) / (enclose_area + K.epsilon())
giou = K.expand_dims(giou, -1)
return giou