當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.maximum方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.maximum方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.maximum方法的具體用法?Python backend.maximum怎麽用?Python backend.maximum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.maximum方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: amplitude_to_decibel

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def amplitude_to_decibel(x, amin=1e-10, dynamic_range=80.0):
    """[K] Convert (linear) amplitude to decibel (log10(x)).

    Parameters
    ----------
    x: Keras *batch* tensor or variable. It has to be batch because of sample-wise `K.max()`.

    amin: minimum amplitude. amplitude smaller than `amin` is set to this.

    dynamic_range: dynamic_range in decibel

    """
    log_spec = 10 * K.log(K.maximum(x, amin)) / np.log(10).astype(K.floatx())
    if K.ndim(x) > 1:
        axis = tuple(range(K.ndim(x))[1:])
    else:
        axis = None

    log_spec = log_spec - K.max(log_spec, axis=axis, keepdims=True)  # [-?, 0]
    log_spec = K.maximum(log_spec, -1 * dynamic_range)  # [-80, 0]
    return log_spec 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:23,代碼來源:backend_keras.py

示例2: get_psp

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def get_psp(self, output_spikes):
        new_spiketimes = tf.where(k.greater(output_spikes, 0),
                                  k.ones_like(output_spikes) * self.time,
                                  self.last_spiketimes)
        new_spiketimes = tf.where(k.less(output_spikes, 0),
                                  k.zeros_like(output_spikes) * self.time,
                                  new_spiketimes)
        assign_new_spiketimes = tf.assign(self.last_spiketimes,
                                          new_spiketimes)
        with tf.control_dependencies([assign_new_spiketimes]):
            last_spiketimes = self.last_spiketimes + 0  # Dummy op
            # psp = k.maximum(0., tf.divide(self.dt, last_spiketimes))
            psp = tf.where(k.greater(last_spiketimes, 0),
                           k.ones_like(output_spikes) * self.dt,
                           k.zeros_like(output_spikes))
        return psp 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:18,代碼來源:ttfs_corrective.py

示例3: _hard_max

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def _hard_max(tens, axis):
    """
    we can't use the argmax function in a loss, as it's not differentiable
    We can use it in a metric, but not in a loss function
    therefore, we replace the 'hard max' operation (i.e. argmax + onehot)
    with this approximation
    """
    tensmax = K.max(tens, axis=axis, keepdims=True)
    eps_hot = K.maximum(tens - tensmax + K.epsilon(), 0)
    one_hot = eps_hot / K.epsilon()
    return one_hot 
開發者ID:adalca,項目名稱:neuron,代碼行數:13,代碼來源:metrics.py

示例4: triplet_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def triplet_loss(y_true, y_pred, alpha=0.4):
    """
    https://github.com/KinWaiCheuk/Triplet-net-keras/blob/master/Triplet%20NN%20Test%20on%20MNIST.ipynb
    Implementation of the triplet loss function
    Arguments:
    y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
    y_pred -- python list containing three objects:
            anchor -- the encodings for the anchor data
            positive -- the encodings for the positive data (similar to anchor)
            negative -- the encodings for the negative data (different from anchor)
    Returns:
    loss -- real number, value of the loss
    """

    total_lenght = y_pred.shape.as_list()[-1]
    anchor = y_pred[:, 0:int(total_lenght * 1 / 3)]
    positive = y_pred[:, int(total_lenght * 1 / 3):int(total_lenght * 2 / 3)]
    negative = y_pred[:, int(total_lenght * 2 / 3):int(total_lenght * 3 / 3)]

    # distance between the anchor and the positive
    pos_dist = K.sum(K.square(anchor - positive), axis=1)

    # distance between the anchor and the negative
    neg_dist = K.sum(K.square(anchor - negative), axis=1)

    # compute loss
    basic_loss = pos_dist - neg_dist + alpha
    loss = K.maximum(basic_loss, 0.0)

    return loss 
開發者ID:CVxTz,項目名稱:image_search_engine,代碼行數:32,代碼來源:model_triplet.py

示例5: correlation_coefficient_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def correlation_coefficient_loss(y_true, y_pred):
    x = y_true                      
    y = y_pred                                  
    mx = K.mean(x)  

    my = K.mean(y)                                     
    xm, ym = x-mx, y-my                                                
    r_num = K.sum(tf.multiply(xm,ym))                                     
    r_den = K.sqrt(tf.multiply(K.sum(K.square(xm)), K.sum(K.square(ym))))
    r = r_num / r_den
    r = K.maximum(K.minimum(r, 1.0), -1.0)

    return 1 - K.square(r) 
開發者ID:xulabs,項目名稱:aitom,代碼行數:15,代碼來源:utils.py

示例6: softmax_focal_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def softmax_focal_loss(y_true, y_pred, gamma=2.0, alpha=0.25):
    """
    Compute softmax focal loss.
    Reference Paper:
        "Focal Loss for Dense Object Detection"
        https://arxiv.org/abs/1708.02002

    # Arguments
        y_true: Ground truth targets,
            tensor of shape (?, num_boxes, num_classes).
        y_pred: Predicted logits,
            tensor of shape (?, num_boxes, num_classes).
        gamma: exponent of the modulating factor (1 - p_t) ^ gamma.
        alpha: optional alpha weighting factor to balance positives vs negatives.

    # Returns
        softmax_focal_loss: Softmax focal loss, tensor of shape (?, num_boxes).
    """

    # Scale predictions so that the class probas of each sample sum to 1
    #y_pred /= K.sum(y_pred, axis=-1, keepdims=True)

    # Clip the prediction value to prevent NaN's and Inf's
    #epsilon = K.epsilon()
    #y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
    y_pred = tf.nn.softmax(y_pred)
    y_pred = tf.maximum(tf.minimum(y_pred, 1 - 1e-15), 1e-15)

    # Calculate Cross Entropy
    cross_entropy = -y_true * tf.math.log(y_pred)

    # Calculate Focal Loss
    softmax_focal_loss = alpha * tf.pow(1 - y_pred, gamma) * cross_entropy

    return softmax_focal_loss 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:37,代碼來源:loss.py

示例7: box_iou

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_iou(b1, b2):
    """
    Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)
    """
    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:40,代碼來源:loss.py

示例8: box_iou

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_iou(b1, b2):
    """
    Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)
    """
    # Expand dim to apply broadcasting.
    #b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:40,代碼來源:loss.py

示例9: frn_layer_paper

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def frn_layer_paper(x, tau, beta, gamma, epsilon=1e-6):
    # x: Input tensor of shape [BxHxWxC].
    # tau, beta, gamma: Variables of shape [1, 1, 1, C].
    # eps: A scalar constant or learnable variable.
    # Compute the mean norm of activations per channel.
    nu2 = tf.reduce_mean(tf.square(x), axis=[1, 2], keepdims=True)
    # Perform FRN.
    x = x * tf.math.rsqrt(nu2 + tf.abs(epsilon))
    # Return after applying the Offset-ReLU non-linearity.
    return tf.maximum(gamma * x + beta, tau) 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:12,代碼來源:FRN.py

示例10: frn_layer_keras

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def frn_layer_keras(x, tau, beta, gamma, epsilon=1e-6):
    # x: Input tensor of shape [BxHxWxC].
    # tau, beta, gamma: Variables of shape [1, 1, 1, C].
    # eps: A scalar constant or learnable variable.
    # Compute the mean norm of activations per channel.
    nu2 = K.mean(K.square(x), axis=[1, 2], keepdims=True)
    # Perform FRN.
    x = x * 1 / K.sqrt(nu2 + K.abs(epsilon))
    # Return after applying the Offset-ReLU non-linearity.
    return K.maximum(gamma * x + beta, tau) 
開發者ID:1044197988,項目名稱:TF.Keras-Commonly-used-models,代碼行數:12,代碼來源:FRN.py

示例11: dice

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def dice(self, y_true, y_pred):
        """
        compute dice for given Tensors

        """
        if self.crop_indices is not None:
            y_true = utils.batch_gather(y_true, self.crop_indices)
            y_pred = utils.batch_gather(y_pred, self.crop_indices)

        if self.input_type == 'prob':
            # We assume that y_true is probabilistic, but just in case:
            if self.re_norm:
                y_true = tf.div_no_nan(y_true, K.sum(y_true, axis=-1, keepdims=True))
            y_true = K.clip(y_true, K.epsilon(), 1)

            # make sure pred is a probability
            if self.re_norm:
                y_pred = tf.div_no_nan(y_pred, K.sum(y_pred, axis=-1, keepdims=True))
            y_pred = K.clip(y_pred, K.epsilon(), 1)

        # Prepare the volumes to operate on
        # If we're doing 'hard' Dice, then we will prepare one-hot-based matrices of size
        # [batch_size, nb_voxels, nb_labels], where for each voxel in each batch entry,
        # the entries are either 0 or 1
        if self.dice_type == 'hard':

            # if given predicted probability, transform to "hard max""
            if self.input_type == 'prob':
                if self.approx_hard_max:
                    y_pred_op = _hard_max(y_pred, axis=-1)
                    y_true_op = _hard_max(y_true, axis=-1)
                else:
                    y_pred_op = _label_to_one_hot(K.argmax(y_pred, axis=-1), self.nb_labels)
                    y_true_op = _label_to_one_hot(K.argmax(y_true, axis=-1), self.nb_labels)

            # if given predicted label, transform to one hot notation
            else:
                assert self.input_type == 'max_label'
                y_pred_op = _label_to_one_hot(y_pred, self.nb_labels)
                y_true_op = _label_to_one_hot(y_true, self.nb_labels)

        # If we're doing soft Dice, require prob output, and the data already is as we need it
        # [batch_size, nb_voxels, nb_labels]
        else:
            assert self.input_type == 'prob', "cannot do soft dice with max_label input"
            y_pred_op = y_pred
            y_true_op = y_true

        # reshape to [batch_size, nb_voxels, nb_labels]
        batch_size = K.shape(y_true)[0]
        y_pred_op = K.reshape(y_pred_op, [batch_size, -1, K.shape(y_true)[-1]])
        y_true_op = K.reshape(y_true_op, [batch_size, -1, K.shape(y_true)[-1]])

        # compute dice for each entry in batch.
        # dice will now be [batch_size, nb_labels]
        top = 2 * K.sum(y_true_op * y_pred_op, 1)
        bottom = K.sum(K.square(y_true_op), 1) + K.sum(K.square(y_pred_op), 1)
        # make sure we have no 0s on the bottom. K.epsilon()
        bottom = K.maximum(bottom, self.area_reg)
        return top / bottom 
開發者ID:adalca,項目名稱:neuron,代碼行數:62,代碼來源:metrics.py

示例12: box_giou

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import maximum [as 別名]
def box_giou(b_true, b_pred):
    """
    Calculate GIoU loss on anchor boxes
    Reference Paper:
        "Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression"
        https://arxiv.org/abs/1902.09630

    Parameters
    ----------
    b_true: GT boxes tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
    b_pred: predict boxes tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh

    Returns
    -------
    giou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
    """
    b_true_xy = b_true[..., :2]
    b_true_wh = b_true[..., 2:4]
    b_true_wh_half = b_true_wh/2.
    b_true_mins = b_true_xy - b_true_wh_half
    b_true_maxes = b_true_xy + b_true_wh_half

    b_pred_xy = b_pred[..., :2]
    b_pred_wh = b_pred[..., 2:4]
    b_pred_wh_half = b_pred_wh/2.
    b_pred_mins = b_pred_xy - b_pred_wh_half
    b_pred_maxes = b_pred_xy + b_pred_wh_half

    intersect_mins = K.maximum(b_true_mins, b_pred_mins)
    intersect_maxes = K.minimum(b_true_maxes, b_pred_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b_true_area = b_true_wh[..., 0] * b_true_wh[..., 1]
    b_pred_area = b_pred_wh[..., 0] * b_pred_wh[..., 1]
    union_area = b_true_area + b_pred_area - intersect_area
    # calculate IoU, add epsilon in denominator to avoid dividing by 0
    iou = intersect_area / (union_area + K.epsilon())

    # get enclosed area
    enclose_mins = K.minimum(b_true_mins, b_pred_mins)
    enclose_maxes = K.maximum(b_true_maxes, b_pred_maxes)
    enclose_wh = K.maximum(enclose_maxes - enclose_mins, 0.0)
    enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
    # calculate GIoU, add epsilon in denominator to avoid dividing by 0
    giou = iou - 1.0 * (enclose_area - union_area) / (enclose_area + K.epsilon())
    giou = K.expand_dims(giou, -1)

    return giou 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:50,代碼來源:loss.py


注:本文中的tensorflow.keras.backend.maximum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。