本文整理匯總了Python中tensorflow.keras.backend.l2_normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.l2_normalize方法的具體用法?Python backend.l2_normalize怎麽用?Python backend.l2_normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.l2_normalize方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def call(self, inputs):
features = inputs[0]
fltr = inputs[1]
# Enforce sparse representation
if not K.is_sparse(fltr):
fltr = ops.dense_to_sparse(fltr)
# Propagation
indices = fltr.indices
N = tf.shape(features, out_type=indices.dtype)[0]
indices = ops.sparse_add_self_loops(indices, N)
targets, sources = indices[:, -2], indices[:, -1]
messages = tf.gather(features, sources)
aggregated = self.aggregate_op(messages, targets, N)
output = K.concatenate([features, aggregated])
output = ops.dot(output, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias)
output = K.l2_normalize(output, axis=-1)
if self.activation is not None:
output = self.activation(output)
return output
示例2: image_model
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def image_model(lr=0.0001):
input_1 = Input(shape=(None, None, 3))
base_model = ResNet50(weights='imagenet', include_top=False)
x1 = base_model(input_1)
x1 = GlobalMaxPool2D()(x1)
dense_1 = Dense(vec_dim, activation="linear", name="dense_image_1")
x1 = dense_1(x1)
_norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))
x1 = _norm(x1)
model = Model([input_1], x1)
model.compile(loss="mae", optimizer=Adam(lr))
model.summary()
return model
示例3: text_model
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def text_model(vocab_size, lr=0.0001):
input_2 = Input(shape=(None,))
embed = Embedding(vocab_size, 50, name="embed")
gru = Bidirectional(GRU(256, return_sequences=True), name="gru_1")
dense_2 = Dense(vec_dim, activation="linear", name="dense_text_1")
x2 = embed(input_2)
x2 = gru(x2)
x2 = GlobalMaxPool1D()(x2)
x2 = dense_2(x2)
_norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))
x2 = _norm(x2)
model = Model([input_2], x2)
model.compile(loss="mae", optimizer=Adam(lr))
model.summary()
return model
示例4: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def call(self, x, **kwargs):
assert isinstance(x, list)
inp_a, inp_b = x
last_state = K.expand_dims(inp_b[:, -1, :], 1)
m = []
for i in range(self.output_dim):
outp_a = inp_a * self.W[i]
outp_last = last_state * self.W[i]
outp_a = K.l2_normalize(outp_a, -1)
outp_last = K.l2_normalize(outp_last, -1)
outp = K.batch_dot(outp_a, outp_last, axes=[2, 2])
m.append(outp)
if self.output_dim > 1:
persp = K.concatenate(m, 2)
else:
persp = m[0]
return [persp, persp]
示例5: compute_scores
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def compute_scores(self, X, A, I):
return K.dot(X, K.l2_normalize(self.kernel))
示例6: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def call(self, inputs, **kwargs):
X, A, E = self.get_inputs(inputs)
X_norm = K.l2_normalize(X, axis=-1)
output = self.propagate(X, A, E, X_norm=X_norm)
output = self.activation(output)
return output
示例7: __init__
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def __init__(self, batch_input_shape=(None, NUM_FRAMES, NUM_FBANKS, 1), include_softmax=False,
num_speakers_softmax=None):
self.include_softmax = include_softmax
if self.include_softmax:
assert num_speakers_softmax > 0
self.clipped_relu_count = 0
# http://cs231n.github.io/convolutional-networks/
# conv weights
# #params = ks * ks * nb_filters * num_channels_input
# Conv128-s
# 5*5*128*128/2+128
# ks*ks*nb_filters*channels/strides+bias(=nb_filters)
# take 100 ms -> 4 frames.
# if signal is 3 seconds, then take 100ms per 100ms and average out this network.
# 8*8 = 64 features.
# used to share all the layers across the inputs
# num_frames = K.shape() - do it dynamically after.
inputs = Input(batch_shape=batch_input_shape, name='input')
x = self.cnn_component(inputs)
x = Reshape((-1, 2048))(x)
# Temporal average layer. axis=1 is time.
x = Lambda(lambda y: K.mean(y, axis=1), name='average')(x)
if include_softmax:
logger.info('Including a Dropout layer to reduce overfitting.')
# used for softmax because the dataset we pre-train on might be too small. easy to overfit.
x = Dropout(0.5)(x)
x = Dense(512, name='affine')(x)
if include_softmax:
# Those weights are just when we train on softmax.
x = Dense(num_speakers_softmax, activation='softmax')(x)
else:
# Does not contain any weights.
x = Lambda(lambda y: K.l2_normalize(y, axis=1), name='ln')(x)
self.m = Model(inputs, x, name='ResCNN')
示例8: call
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def call(self, inputs, **kwargs):
sent1 = inputs[0]
sent2 = inputs[1]
v1 = K.expand_dims(sent1, -2) * self.kernel
v2 = self.kernel * K.expand_dims(sent2, 1)
v2 = K.expand_dims(v2, 1)
v1 = K.l2_normalize(v1, axis=-1)
v2 = K.l2_normalize(v2, axis=-1)
matching = K.sum(v1 * v2, axis=-1)
return matching
示例9: _euclidian_dist
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def _euclidian_dist(self, x_pair: List[Tensor]) -> Tensor:
x1_norm = K.l2_normalize(x_pair[0], axis=1)
x2_norm = K.l2_normalize(x_pair[1], axis=1)
diff = x1_norm - x2_norm
square = K.square(diff)
_sum = K.sum(square, axis=1)
_sum = K.clip(_sum, min_value=1e-12, max_value=None)
dist = K.sqrt(_sum) / 2.
return dist
示例10: model
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import l2_normalize [as 別名]
def model(vocab_size, lr=0.0001):
input_1 = Input(shape=(None, None, 3))
input_2 = Input(shape=(None,))
input_3 = Input(shape=(None,))
base_model = ResNet50(weights='imagenet', include_top=False)
x1 = base_model(input_1)
x1 = GlobalMaxPool2D()(x1)
dense_1 = Dense(vec_dim, activation="linear", name="dense_image_1")
x1 = dense_1(x1)
embed = Embedding(vocab_size, 50, name="embed")
gru = Bidirectional(GRU(256, return_sequences=True), name="gru_1")
dense_2 = Dense(vec_dim, activation="linear", name="dense_text_1")
x2 = embed(input_2)
x2 = SpatialDropout1D(0.1)(x2)
x2 = gru(x2)
x2 = GlobalMaxPool1D()(x2)
x2 = dense_2(x2)
x3 = embed(input_3)
x3 = SpatialDropout1D(0.1)(x3)
x3 = gru(x3)
x3 = GlobalMaxPool1D()(x3)
x3 = dense_2(x3)
_norm = Lambda(lambda x: K.l2_normalize(x, axis=-1))
x1 = _norm(x1)
x2 = _norm(x2)
x3 = _norm(x3)
x = Concatenate(axis=-1)([x1, x2, x3])
model = Model([input_1, input_2, input_3], x)
model.compile(loss=triplet_loss, optimizer=Adam(lr))
model.summary()
return model