當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.backend方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.backend方法的具體用法?Python keras.backend怎麽用?Python keras.backend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras的用法示例。


在下文中一共展示了keras.backend方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: check_args

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def check_args(parsed_args):
    """
    Function to check for inherent contradictions within parsed arguments.
    For example, batch_size < num_gpus
    Intended to raise errors prior to backend initialisation.

    Args
        parsed_args: parser.parse_args()

    Returns
        parsed_args
    """

    if parsed_args.gpu and parsed_args.batch_size < len(parsed_args.gpu.split(',')):
        raise ValueError(
            "Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size,
                                                                                             len(parsed_args.gpu.split(
                                                                                                 ','))))

    return parsed_args 
開發者ID:xuannianz,項目名稱:EfficientDet,代碼行數:22,代碼來源:train.py

示例2: transition_block

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def transition_block(x, reduction, name, pool=True):
    """A transition block.
    # Arguments
        x: input tensor.
        reduction: float, compression rate at transition layers.
        name: string, block label.
    # Returns
        output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_bn")(x)
    x = layers.Activation("relu", name=name + "_relu")(x)
    x = layers.Conv2D(
        int(backend.int_shape(x)[bn_axis] * reduction),
        1,
        use_bias=False,
        name=name + "_conv",
    )(x)
    if pool:
        x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x)
    return x 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:23,代碼來源:imagenet_densenet.py

示例3: correct_pad

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def correct_pad(backend, inputs, kernel_size):
    """Returns a tuple for zero-padding for 2D convolution with downsampling.
    # Arguments
        input_size: An integer or tuple/list of 2 integers.
        kernel_size: An integer or tuple/list of 2 integers.
    # Returns
        A tuple.
    """
    img_dim = 2 if backend.image_data_format() == 'channels_first' else 1
    input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]

    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)

    if input_size[0] is None:
        adjust = (1, 1)
    else:
        adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)

    correct = (kernel_size[0] // 2, kernel_size[1] // 2)

    return ((correct[0] - adjust[0], correct[0]),
            (correct[1] - adjust[1], correct[1])) 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:25,代碼來源:imagenet_utils.py

示例4: convert_log

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def convert_log(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert Log layer
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: internal converter name
    :param keras_name: resulting layer name
    :return: None
    """
    if len(node.input) != 1:
        assert AttributeError('More than 1 input for log layer.')

    input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)

    def target_layer(x):
        import tensorflow.keras.backend as K
        return K.log(x)

    lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
    layers[node_name] = lambda_layer(input_0)
    lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:25,代碼來源:operation_layers.py

示例5: convert_exp

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def convert_exp(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert Exp layer
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: resulting layer name
    :return: None
    """
    if len(node.input) != 1:
        assert AttributeError('More than 1 input for log layer.')

    input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)

    def target_layer(x):
        import tensorflow.keras.backend as K
        return K.exp(x)

    lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
    layers[node_name] = lambda_layer(input_0)
    lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:24,代碼來源:operation_layers.py

示例6: convert_reduce_mean

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def convert_reduce_mean(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert reduce mean.
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: internal converter name
    :param keras_name: resulting layer name
    :return: None
    """
    if len(node.input) != 1:
        assert AttributeError('More than 1 input for reduce mean layer.')

    input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)

    def target_layer(x, axis=params['axes'], keepdims=params['keepdims']):
        import tensorflow.keras.backend as K
        return K.mean(x, keepdims=(keepdims == 1), axis=axis)

    lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
    layers[node_name] = lambda_layer(input_0)
    layers[node_name].set_shape(layers[node_name].shape)
    lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:26,代碼來源:operation_layers.py

示例7: convert_pow

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def convert_pow(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert Pow layer
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: internal converter name
    :param keras_name: resulting layer name
    :return: None
    """
    if len(node.input) != 2:
        assert AttributeError('More than 2 inputs for pow layer.')

    input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)
    power = ensure_numpy_type(layers[node.input[1]])

    def target_layer(x, a=power):
        import tensorflow.keras.backend as K
        return K.pow(x, a)

    lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
    layers[node_name] = lambda_layer(input_0)
    lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:26,代碼來源:operation_layers.py

示例8: convert_floor

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def convert_floor(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert Floor layer
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: internal converter name
    :param keras_name: resulting layer name
    :return: None
    """
    if len(node.input) != 1:
        assert AttributeError('More than 1 input for floor layer.')

    input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)

    def target_layer(x):
        # Floor is absent in keras.backend
        import tensorflow as tf
        return tf.floor(x)

    lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
    layers[node_name] = lambda_layer(input_0)
    lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:26,代碼來源:operation_layers.py

示例9: get_kwargs

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def get_kwargs():
        return {
            'backend': tfkeras.backend,
            'layers': tfkeras.layers,
            'models': tfkeras.models,
            'utils': tfkeras.utils,
        } 
開發者ID:qubvel,項目名稱:classification_models,代碼行數:9,代碼來源:tfkeras.py

示例10: get_submodules_from_kwargs

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def get_submodules_from_kwargs(kwargs):
    backend = kwargs.get('backend', _KERAS_BACKEND)
    layers = kwargs.get('layers', _KERAS_LAYERS)
    models = kwargs.get('models', _KERAS_MODELS)
    utils = kwargs.get('utils', _KERAS_UTILS)
    for key in kwargs.keys():
        if key not in ['backend', 'layers', 'models', 'utils']:
            raise TypeError('Invalid keyword argument: %s', key)
    return backend, layers, models, utils 
開發者ID:qubvel,項目名稱:efficientnet,代碼行數:11,代碼來源:__init__.py

示例11: inject_keras_modules

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def inject_keras_modules(func):
    import keras
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        kwargs['backend'] = keras.backend
        kwargs['layers'] = keras.layers
        kwargs['models'] = keras.models
        kwargs['utils'] = keras.utils
        return func(*args, **kwargs)

    return wrapper 
開發者ID:qubvel,項目名稱:efficientnet,代碼行數:13,代碼來源:__init__.py

示例12: inject_tfkeras_modules

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def inject_tfkeras_modules(func):
    import tensorflow.keras as tfkeras
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        kwargs['backend'] = tfkeras.backend
        kwargs['layers'] = tfkeras.layers
        kwargs['models'] = tfkeras.models
        kwargs['utils'] = tfkeras.utils
        return func(*args, **kwargs)

    return wrapper 
開發者ID:qubvel,項目名稱:efficientnet,代碼行數:13,代碼來源:__init__.py

示例13: conv_block

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def conv_block(x, growth_rate, name, dilation=1):
    """A building block for a dense block.
    # Arguments
        x: input tensor.
        growth_rate: float, growth rate at dense layers.
        name: string, block label.
    # Returns
        Output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn")(
        x
    )
    x1 = layers.Activation("relu", name=name + "_0_relu")(x1)
    x1 = layers.Conv2D(4 * growth_rate, 1, use_bias=False, name=name + "_1_conv")(x1)
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn")(
        x1
    )
    x1 = layers.Activation("relu", name=name + "_1_relu")(x1)
    x1 = layers.Conv2D(
        growth_rate,
        3,
        padding="same",
        use_bias=False,
        dilation_rate=dilation,
        name=name + "_2_conv",
    )(x1)
    x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1])
    return x 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:31,代碼來源:imagenet_densenet.py

示例14: preprocess_input

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def preprocess_input(x, data_format=None, mode='caffe', **kwargs):
    """Preprocesses a tensor or Numpy array encoding a batch of images.
    # Arguments
        x: Input Numpy or symbolic tensor, 3D or 4D.
            The preprocessed data is written over the input data
            if the data types are compatible. To avoid this
            behaviour, `numpy.copy(x)` can be used.
        data_format: Data format of the image tensor/array.
        mode: One of "caffe", "tf" or "torch".
            - caffe: will convert the images from RGB to BGR,
                then will zero-center each color channel with
                respect to the ImageNet dataset,
                without scaling.
            - tf: will scale pixels between -1 and 1,
                sample-wise.
            - torch: will scale pixels between 0 and 1 and then
                will normalize each channel with respect to the
                ImageNet dataset.
    # Returns
        Preprocessed tensor or Numpy array.
    # Raises
        ValueError: In case of unknown `data_format` argument.
    """
    if data_format is None:
        data_format = backend.image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format ' + str(data_format))

    if isinstance(x, np.ndarray):
        return _preprocess_numpy_input(x, data_format=data_format,
                                       mode=mode, **kwargs)
    else:
        return _preprocess_symbolic_input(x, data_format=data_format,
                                          mode=mode, **kwargs) 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:36,代碼來源:imagenet_utils.py

示例15: inject_global_submodules

# 需要導入模塊: from tensorflow import keras [as 別名]
# 或者: from tensorflow.keras import backend [as 別名]
def inject_global_submodules(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        kwargs['backend'] = _KERAS_BACKEND
        kwargs['layers'] = _KERAS_LAYERS
        kwargs['models'] = _KERAS_MODELS
        kwargs['utils'] = _KERAS_UTILS
        return func(*args, **kwargs)

    return wrapper 
開發者ID:qubvel,項目名稱:segmentation_models,代碼行數:12,代碼來源:__init__.py


注:本文中的tensorflow.keras.backend方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。