本文整理匯總了Python中tensorflow.keras.backend.get_session方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.get_session方法的具體用法?Python backend.get_session怎麽用?Python backend.get_session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.get_session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def main(base_model_name, weights_file, export_path):
# Load model and weights
nima = Nima(base_model_name, weights=None)
nima.build()
nima.nima_model.load_weights(weights_file)
# Tell keras that this will be used for making predictions
K.set_learning_phase(0)
# CustomObject required by MobileNet
with CustomObjectScope({'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D}):
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(
inputs={'input_image': nima.nima_model.input},
outputs={'quality_prediction': nima.nima_model.output}
)
builder.add_meta_graph_and_variables(
sess=K.get_session(),
tags=[tag_constants.SERVING],
signature_def_map={'image_quality': signature}
)
builder.save()
print(f'TF model exported to: {export_path}')
示例2: secure_model
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def secure_model(model, **kwargs):
"""Secure a plaintext model from the current session."""
session = K.get_session()
min_graph = graph_util.convert_variables_to_constants(
session, session.graph_def, [node.op.name for node in model.outputs]
)
graph_fname = "model.pb"
tf.train.write_graph(min_graph, _TMPDIR, graph_fname, as_text=False)
if "batch_size" in kwargs:
batch_size = kwargs.pop("batch_size")
else:
batch_size = 1
graph_def, inputs = load_graph(
os.path.join(_TMPDIR, graph_fname), batch_size=batch_size
)
c = tfe.convert.convert.Converter(tfe.convert.registry(), **kwargs)
y = c.convert(remove_training_nodes(graph_def), "input-provider", inputs)
return PrivateModel(y)
示例3: __init__
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def __init__(self, model, shape):
shape = (None, shape[0], shape[1], shape[2])
x_name = 'image_tensor_x'
with K.get_session() as sess:
x_tensor = tf.placeholder(tf.float32, shape, x_name)
K.set_learning_phase(0)
y_tensor = model(x_tensor)
y_name = [y_tensor[-1].name[:-2], y_tensor[-2].name[:-2]]
graph = sess.graph.as_graph_def()
graph0 = tf.graph_util.convert_variables_to_constants(sess, graph, y_name)
graph1 = tf.graph_util.remove_training_nodes(graph0)
self.x_name = [x_name]
self.y_name = y_name
self.frozen = graph1
self.model = model
示例4: infer
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def infer(self, yield_single_examples=False):
''' only for infer '''
#load data
mode = utils.INFER
# data must be init before model build
infer_ds, infer_task = self.input_data(mode=mode)
infer_gen = tf.data.make_one_shot_iterator(infer_ds)
self.model_fn(mode=mode)
assert self._built
#load model
infer_func = self.get_metric_func()
for _ in range(len(infer_task)):
batch_data = tf.keras.backend.get_session().run(infer_gen.get_next()[0])
batch_input = batch_data['inputs']
batch_uttid = batch_data['uttids'].tolist()
batch_predict = infer_func(batch_input)[0]
batch_decode = py_ctc.ctc_greedy_decode(batch_predict, 0, unique=True)
for utt_index, uttid in enumerate(batch_uttid):
logging.info("utt ID: {}".format(uttid))
logging.info("infer result: {}".format(batch_decode[utt_index]))
示例5: main
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def main():
phi = 1
weighted_bifpn = False
model_path = 'checkpoints/2019-12-03/pascal_05_0.6283_1.1975_0.8029.h5'
image_sizes = (512, 640, 768, 896, 1024, 1280, 1408)
image_size = image_sizes[phi]
classes = [
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor',
]
num_classes = len(classes)
score_threshold = 0.5
model, prediction_model = efficientdet(phi=phi,
weighted_bifpn=weighted_bifpn,
num_classes=num_classes,
score_threshold=score_threshold)
prediction_model.load_weights(model_path, by_name=True)
frozen_graph = freeze_session(K.get_session(), output_names=[out.op.name for out in prediction_model.outputs])
tf.train.write_graph(frozen_graph, "./checkpoints/2019-12-03/", "pascal_05.pb", as_text=False)
示例6: reset_weights
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def reset_weights(model, session=None):
"""
reset weights of model with the appropriate initializer.
Note: only uses "kernel_initializer" and "bias_initializer"
does not close session.
Reference:
https://www.codementor.io/nitinsurya/how-to-re-initialize-keras-model-weights-et41zre2g
Parameters:
model: keras model to reset
session (optional): the current session
"""
if session is None:
session = K.get_session()
for layer in model.layers:
reset = False
if hasattr(layer, 'kernel_initializer'):
layer.kernel.initializer.run(session=session)
reset = True
if hasattr(layer, 'bias_initializer'):
layer.bias.initializer.run(session=session)
reset = True
if not reset:
print('Could not find initializer for layer %s. skipping', layer.name)
示例7: tpu_compatible
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def tpu_compatible():
'''Fit the tpu problems we meet while using keras tpu model'''
if not hasattr(tpu_compatible, 'once'):
tpu_compatible.once = True
else:
return
import tensorflow as tf
import tensorflow.keras.backend as K
_version = tf.__version__.split('.')
is_correct_version = int(_version[0]) >= 1 and (int(_version[0]) >= 2 or int(_version[1]) >= 13)
from tensorflow.contrib.tpu.python.tpu.keras_support import KerasTPUModel
def initialize_uninitialized_variables():
sess = K.get_session()
uninitialized_variables = set([i.decode('ascii') for i in sess.run(tf.report_uninitialized_variables())])
init_op = tf.variables_initializer(
[v for v in tf.global_variables() if v.name.split(':')[0] in uninitialized_variables]
)
sess.run(init_op)
_tpu_compile = KerasTPUModel.compile
def tpu_compile(self,
optimizer,
loss=None,
metrics=None,
loss_weights=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
if not is_correct_version:
raise ValueError('You need tensorflow >= 1.3 for better keras tpu support!')
_tpu_compile(self, optimizer, loss, metrics, loss_weights,
sample_weight_mode, weighted_metrics,
target_tensors, **kwargs)
initialize_uninitialized_variables() # for unknown reason, we should run this after compile sometimes
KerasTPUModel.compile = tpu_compile
示例8: export_split_edge_case
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_split_edge_case(filename, input_shape):
model, _ = _keras_model_core(split_edge_case_builder, shape=input_shape)
sess = K.get_session()
output = model.output
return export(output, filename, sess=sess)
示例9: export_flatten
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_flatten(filename, input_shape):
model = Sequential()
model.add(Flatten(input_shape=input_shape[1:]))
model.predict(np.random.uniform(size=input_shape))
sess = K.get_session()
output = model.get_layer("flatten").output
return export(output, filename, sess=sess)
示例10: export_keras_multilayer
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_multilayer(filename, input_shape):
model, _ = _keras_model_core(keras_multilayer_builder, shape=input_shape)
sess = K.get_session()
output = model.output
return export(output, filename, sess=sess)
示例11: export_keras_conv2d
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_conv2d(filename, input_shape):
model, _ = _keras_conv2d_core(shape=input_shape)
sess = K.get_session()
output = model.get_layer("conv2d").output
return export(output, filename, sess=sess)
示例12: export_keras_dense
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_dense(filename, input_shape):
model, _ = _keras_dense_core(shape=input_shape)
sess = K.get_session()
output = model.get_layer("dense").output
return export(output, filename, sess=sess)
示例13: export_keras_batchnorm
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_batchnorm(filename, input_shape):
model, _ = _keras_batchnorm_core(shape=input_shape)
sess = K.get_session()
output = model.get_layer("batch_normalization").output
return export(output, filename, sess=sess)
示例14: export_keras_global_avgpool
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_global_avgpool(filename, input_shape):
model, _ = _keras_global_avgpool_core(shape=input_shape)
sess = K.get_session()
output = model.get_layer("global_average_pooling2d").output
return export(output, filename, sess=sess)
示例15: export_keras_global_maxpool
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import get_session [as 別名]
def export_keras_global_maxpool(filename, input_shape):
model, _ = _keras_global_maxpool_core(shape=input_shape)
sess = K.get_session()
output = model.get_layer("global_max_pooling2d").output
return export(output, filename, sess=sess)