本文整理匯總了Python中tensorflow.keras.backend.function方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.function方法的具體用法?Python backend.function怎麽用?Python backend.function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.function方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_smooth_sigmoid
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_smooth_sigmoid():
"""Test smooth_sigmoid function."""
test_values = np.array(
[[-3.0, -2.0, -1.0, -0.5, 0.005, 0.0, 0.005, 0.5, 1, 4, 10]],
dtype=K.floatx())
def ref_smooth_sigmoid(y):
x = 0.1875 * y + 0.5
z = 0.0 if x <= 0.0 else (1.0 if x >= 1.0 else x)
return z
sigmoid = np.vectorize(ref_smooth_sigmoid)
x = K.placeholder(ndim=2)
f = K.function([x], [smooth_sigmoid(x)])
result = f([test_values])[0]
expected = sigmoid(test_values)
assert_allclose(result, expected, rtol=1e-05)
示例2: test_hard_sigmoid
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_hard_sigmoid():
"""Test hard_sigmoid function."""
test_values = np.array(
[[-3.0, -2.0, -1.0, -0.5, 0.005, 0.0, 0.005, 0.5, 1, 4, 10]],
dtype=K.floatx())
def ref_hard_sigmoid(y):
x = 0.5 * y + 0.5
z = 0.0 if x <= 0.0 else (1.0 if x >= 1.0 else x)
return z
sigmoid = np.vectorize(ref_hard_sigmoid)
x = K.placeholder(ndim=2)
f = K.function([x], [hard_sigmoid(x)])
result = f([test_values])[0]
expected = sigmoid(test_values)
assert_allclose(result, expected, rtol=1e-05)
示例3: saliency
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def saliency(input, output):
with graph.as_default():
with sess.as_default():
processed_input = preprocessing(input)
processed_output = output
output = 0 if float(output["Positive review"]) > 0.5 else 1
input_tensors = [model.layers[0].input, K.learning_phase()]
saliency_input = model.layers[1].input
saliency_output = model.layers[-1].output[:, output]
gradients = model.optimizer.get_gradients(saliency_output, saliency_input)
compute_gradients = K.function(inputs=input_tensors, outputs=gradients)
saliency_graph = compute_gradients(processed_input.reshape(1, 500))[0]
saliency_graph = saliency_graph.reshape(500, 32)
saliency_graph = np.abs(saliency_graph).sum(axis=1)
normalized_saliency = (saliency_graph - saliency_graph.min()) / (saliency_graph.max() - saliency_graph.min())
start_idx = np.where(processed_input[0] == START_TOKEN)[0][0]
heat_map = []
counter = 0
words = input.split(" ")
for i in range(start_idx + 1, 500):
heat_map.extend([normalized_saliency[i]] * len(words[counter]))
heat_map.append(0) # zero saliency value assigned to the spaces between words
counter += 1
return np.array(heat_map)
# In[6]:
示例4: test_quantized_relu
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_quantized_relu(bits, integer, use_sigmoid, negative_slope, test_values,
expected_values):
"""Test quantized_relu function."""
x = K.placeholder(ndim=2)
f = K.function([x], [quantized_relu(bits, integer, use_sigmoid,
negative_slope)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05)
示例5: test_quantized_po2
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_quantized_po2(bits,
max_value,
use_stochastic_rounding,
quadratic_approximation,
test_values,
expected_values):
"""Test quantized_po2 function."""
x = K.placeholder(ndim=2)
f = K.function([x], [quantized_po2(bits, max_value, use_stochastic_rounding,
quadratic_approximation)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05, atol=1e-05)
示例6: test_quantized_relu_po2
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_quantized_relu_po2(bits,
max_value,
use_stochastic_rounding,
quadratic_approximation,
test_values,
expected_values):
"""Test quantized_po2 function."""
x = K.placeholder(ndim=2)
f = K.function([x],
[quantized_relu_po2(bits, max_value, use_stochastic_rounding,
quadratic_approximation)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05, atol=1e-05)
示例7: test_quantized_bits
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_quantized_bits(bits, integer, symmetric, keep_negative, test_values,
expected_values):
x = K.placeholder(ndim=2)
f = K.function([x],
[quantized_bits(bits, integer, symmetric, keep_negative)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05)
示例8: test_ternary
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_ternary(alpha, threshold, test_values, expected_values):
x = K.placeholder(ndim=2)
f = K.function([x],
[ternary(alpha, threshold)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05)
示例9: test_binary
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_binary(use_01, alpha, test_values, expected_values):
x = K.placeholder(ndim=2)
f = K.function([x], [binary(use_01, alpha)(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05)
示例10: test_stochastic_round_quantized_po2
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_stochastic_round_quantized_po2(test_values, expected_values):
K.set_learning_phase(1)
np.random.seed(666)
x = K.placeholder(ndim=2)
q = quantized_po2(use_stochastic_rounding=True)
f = K.function([x], [q(x)])
res = f([test_values])[0]
res = np.average(res)
assert_allclose(res, expected_values, rtol=1e-01, atol=1e-6)
示例11: test_stochastic_round_quantized_relu_po2
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_stochastic_round_quantized_relu_po2(test_values, expected_values):
K.set_learning_phase(1)
np.random.seed(666)
x = K.placeholder(ndim=2)
q = quantized_relu_po2(use_stochastic_rounding=True)
f = K.function([x], [q(x)])
res = f([test_values])[0]
res = np.average(res)
assert_allclose(res, expected_values, rtol=1e-01, atol=1e-6)
示例12: test_stochastic_ternary_inference_mode
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def test_stochastic_ternary_inference_mode(alpha, threshold, test_values, expected_values):
K.set_learning_phase(0)
x = K.placeholder(ndim=2)
q = stochastic_ternary(alpha, threshold)
f = K.function([x],
[q(x)])
result = f([test_values])[0]
assert_allclose(result, expected_values, rtol=1e-05)
示例13: _evaluate
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def _evaluate(model: Model, nodes_to_evaluate, x, y=None, auto_compile=False):
if not model._is_compiled:
if model.name in ['vgg16', 'vgg19', 'inception_v3', 'inception_resnet_v2', 'mobilenet_v2', 'mobilenetv2']:
print('Transfer learning detected. Model will be compiled with ("categorical_crossentropy", "adam").')
print('If you want to change the default behaviour, then do in python:')
print('model.name = ""')
print('Then compile your model with whatever loss you want: https://keras.io/models/model/#compile.')
print('If you want to get rid of this message, add this line before calling keract:')
print('model.compile(loss="categorical_crossentropy", optimizer="adam")')
model.compile(loss='categorical_crossentropy', optimizer='adam')
else:
if auto_compile:
model.compile(loss='mse', optimizer='adam')
else:
print('Please compile your model first! https://keras.io/models/model/#compile.')
print('If you only care about the activations (outputs of the layers), '
'then just compile your model like that:')
print('model.compile(loss="mse", optimizer="adam")')
raise Exception('Compilation of the model required.')
def eval_fn(k_inputs):
try:
return K.function(k_inputs, nodes_to_evaluate)(model._standardize_user_data(x, y))
except AttributeError: # one way to avoid forcing non eager mode.
return K.function(k_inputs, nodes_to_evaluate)((x, y)) # although works.
try:
return eval_fn(model._feed_inputs + model._feed_targets + model._feed_sample_weights)
except Exception:
return eval_fn(model._feed_inputs)
示例14: get_gradients_of_activations
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def get_gradients_of_activations(model, x, y, layer_names=None, output_format='simple', nested=False):
"""
Get gradients of the outputs of the activation functions, regarding the loss.
Intuitively, it shows how your activation maps change over a tiny modification of the loss.
:param model: keras compiled model or one of ['vgg16', 'vgg19', 'inception_v3', 'inception_resnet_v2',
'mobilenet_v2', 'mobilenetv2'].
:param x: Model input (Numpy array). In the case of multi-inputs, x should be of type List.
:param y: Model target (Numpy array). In the case of multi-inputs, y should be of type List.
:param layer_names: (optional) Single name of a layer or list of layer names for which activations should be
returned. It is useful in very big networks when it is computationally expensive to evaluate all the layers/nodes.
:param output_format: Change the output dictionary key of the function.
- 'simple': output key will match the names of the Keras layers. For example Dense(1, name='d1') will
return {'d1': ...}.
- 'full': output key will match the full name of the output layer name. In the example above, it will
return {'d1/BiasAdd:0': ...}.
- 'numbered': output key will be an index range, based on the order of definition of each layer within the model.
- 'nested': If specified, will move recursively through the model definition to retrieve nested layers.
Recursion ends at leaf layers of the model tree or at layers with their name specified in layer_names.
E.g., a model with the following structure
-layer1
-conv1
...
-fc1
-layer2
-fc2
... yields a dictionary with keys 'layer1/conv1', ..., 'layer1/fc1', 'layer2/fc2'.
If layer_names = ['layer2/fc2'] is specified, the dictionary will only hold one key 'layer2/fc2'.
The layer names are generated by joining all layers from top level to leaf level with the separator '/'.
:return: Dict {layer_names (specified by output_format) -> activation of the layer output/node (Numpy array)}.
"""
nodes = _get_nodes(model, output_format, nested=nested, layer_names=layer_names)
return _get_gradients(model, x, y, nodes)
示例15: _get_gradients
# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import function [as 別名]
def _get_gradients(model, x, y, nodes):
if model.optimizer is None:
raise Exception('Please compile the model first. The loss function is required to compute the gradients.')
nodes_names = nodes.keys()
nodes_values = nodes.values()
try:
if not hasattr(model, 'total_loss'):
raise Exception('Disable TF eager mode to use get_gradients.\n'
'Add this command at the beginning of your script:\n'
'tf.compat.v1.disable_eager_execution()')
grads = model.optimizer.get_gradients(model.total_loss, nodes_values)
except ValueError as e:
if 'differentiable' in str(e):
# Probably one of the gradients operations is not differentiable...
grads = []
differentiable_nodes = []
for n in nodes_values:
try:
grads.extend(model.optimizer.get_gradients(model.total_loss, n))
differentiable_nodes.append(n)
except ValueError:
pass
nodes_values = differentiable_nodes
else:
raise e
gradients_values = _evaluate(model, grads, x, y)
return OrderedDict(zip(nodes_names, gradients_values))