當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.floatx方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.floatx方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.floatx方法的具體用法?Python backend.floatx怎麽用?Python backend.floatx使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.floatx方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def call(self, x):

        n = (self.win_length - 1) / 2.0
        denom = n * (n + 1) * (2 * n + 1) / 3

        if self.data_format == 'channels_first':
            x = K.permute_dimensions(x, (0, 2, 3, 1))

        x = tf.pad(x, tf.constant([[0, 0], [0, 0], [int(n), int(n)], [0, 0]]), mode=self.mode)
        kernel = K.arange(-n, n + 1, 1, dtype=K.floatx())
        kernel = K.reshape(kernel, (1, kernel.shape[-1], 1, 1))  # (freq, time)

        x = K.conv2d(x, kernel, 1, data_format='channels_last') / denom

        if self.data_format == 'channels_first':
            x = K.permute_dimensions(x, (0, 3, 1, 2))

        return x 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:20,代碼來源:utils.py

示例2: amplitude_to_decibel

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def amplitude_to_decibel(x, amin=1e-10, dynamic_range=80.0):
    """[K] Convert (linear) amplitude to decibel (log10(x)).

    Parameters
    ----------
    x: Keras *batch* tensor or variable. It has to be batch because of sample-wise `K.max()`.

    amin: minimum amplitude. amplitude smaller than `amin` is set to this.

    dynamic_range: dynamic_range in decibel

    """
    log_spec = 10 * K.log(K.maximum(x, amin)) / np.log(10).astype(K.floatx())
    if K.ndim(x) > 1:
        axis = tuple(range(K.ndim(x))[1:])
    else:
        axis = None

    log_spec = log_spec - K.max(log_spec, axis=axis, keepdims=True)  # [-?, 0]
    log_spec = K.maximum(log_spec, -1 * dynamic_range)  # [-80, 0]
    return log_spec 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:23,代碼來源:backend_keras.py

示例3: test_get_stft_kernels

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_get_stft_kernels():
    """test for backend.get_stft_kernels"""
    n_dft = 4
    real_kernels, imag_kernels = KPB.get_stft_kernels(n_dft)

    real_kernels_ref = np.array(
        [[[[0.0, 0.0, 0.0]]], [[[0.5, 0.0, -0.5]]], [[[1.0, -1.0, 1.0]]], [[[0.5, 0.0, -0.5]]]],
        dtype=K.floatx(),
    )
    imag_kernels_ref = np.array(
        [[[[0.0, 0.0, 0.0]]], [[[0.0, -0.5, 0.0]]], [[[0.0, 0.0, 0.0]]], [[[0.0, 0.5, 0.0]]]],
        dtype=K.floatx(),
    )

    assert real_kernels.shape == (n_dft, 1, 1, n_dft // 2 + 1)
    assert imag_kernels.shape == (n_dft, 1, 1, n_dft // 2 + 1)
    assert np.allclose(real_kernels, real_kernels_ref, atol=TOL)
    assert np.allclose(imag_kernels, imag_kernels_ref, atol=TOL) 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:20,代碼來源:test_backend.py

示例4: test_binary_auto

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_binary_auto():
  """Test binary auto scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer = binary(alpha="auto")
    q = K.eval(quantizer(x))

    result = get_weight_scale(quantizer, q)
    expected = m / 2.0
    logging.info("expect %s", expected)
    logging.info("result %s", result)
    assert_allclose(result, expected, rtol=0.02) 
開發者ID:google,項目名稱:qkeras,代碼行數:21,代碼來源:qalpha_test.py

示例5: test_binary_auto_po2

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_binary_auto_po2():
  """Test binary auto_po2 scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer_ref = binary(alpha="auto")
    quantizer = binary(alpha="auto_po2")

    q_ref = K.eval(quantizer_ref(x))
    q = K.eval(quantizer(x))

    ref = get_weight_scale(quantizer_ref, q_ref)

    expected = np.power(2.0, np.round(np.log2(ref)))
    result = get_weight_scale(quantizer, q)

    assert_allclose(result, expected, rtol=0.0001) 
開發者ID:google,項目名稱:qkeras,代碼行數:25,代碼來源:qalpha_test.py

示例6: test_ternary_auto_po2

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_ternary_auto_po2():
  """Test ternary auto_po2 scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer_ref = ternary(alpha="auto")
    quantizer = ternary(alpha="auto_po2")

    q_ref = K.eval(quantizer_ref(x))
    q = K.eval(quantizer(x))

    ref = get_weight_scale(quantizer_ref, q_ref)

    expected = np.power(2.0, np.round(np.log2(ref)))
    result = get_weight_scale(quantizer, q)

    assert_allclose(result, expected, rtol=0.0001) 
開發者ID:google,項目名稱:qkeras,代碼行數:25,代碼來源:qalpha_test.py

示例7: test_smooth_sigmoid

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_smooth_sigmoid():
  """Test smooth_sigmoid function."""
  test_values = np.array(
      [[-3.0, -2.0, -1.0, -0.5, 0.005, 0.0, 0.005, 0.5, 1, 4, 10]],
      dtype=K.floatx())

  def ref_smooth_sigmoid(y):
    x = 0.1875 * y + 0.5
    z = 0.0 if x <= 0.0 else (1.0 if x >= 1.0 else x)
    return z

  sigmoid = np.vectorize(ref_smooth_sigmoid)
  x = K.placeholder(ndim=2)
  f = K.function([x], [smooth_sigmoid(x)])
  result = f([test_values])[0]
  expected = sigmoid(test_values)
  assert_allclose(result, expected, rtol=1e-05) 
開發者ID:google,項目名稱:qkeras,代碼行數:19,代碼來源:qactivation_test.py

示例8: test_hard_sigmoid

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def test_hard_sigmoid():
  """Test hard_sigmoid function."""
  test_values = np.array(
      [[-3.0, -2.0, -1.0, -0.5, 0.005, 0.0, 0.005, 0.5, 1, 4, 10]],
      dtype=K.floatx())

  def ref_hard_sigmoid(y):
    x = 0.5 * y + 0.5
    z = 0.0 if x <= 0.0 else (1.0 if x >= 1.0 else x)
    return z

  sigmoid = np.vectorize(ref_hard_sigmoid)

  x = K.placeholder(ndim=2)
  f = K.function([x], [hard_sigmoid(x)])
  result = f([test_values])[0]
  expected = sigmoid(test_values)
  assert_allclose(result, expected, rtol=1e-05) 
開發者ID:google,項目名稱:qkeras,代碼行數:20,代碼來源:qactivation_test.py

示例9: reset_spikevars

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def reset_spikevars(self, sample_idx):
        """
        Reset variables present in spiking layers. Can be turned off for
        instance when a video sequence is tested.
        """

        mod = self.config.getint('simulation', 'reset_between_nth_sample')
        mod = mod if mod else sample_idx + 1
        do_reset = sample_idx % mod == 0
        if do_reset:
            k.set_value(self.mem, self.init_membrane_potential())
        k.set_value(self.time, np.float32(self.dt))
        zeros_output_shape = np.zeros(self.output_shape, k.floatx())
        if self.tau_refrac > 0:
            k.set_value(self.refrac_until, zeros_output_shape)
        if self.spiketrain is not None:
            k.set_value(self.spiketrain, zeros_output_shape)
        k.set_value(self.last_spiketimes, zeros_output_shape - 1) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:20,代碼來源:ttfs.py

示例10: reset_spikevars

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def reset_spikevars(self, sample_idx):
        """
        Reset variables present in spiking layers. Can be turned off for
        instance when a video sequence is tested.
        """

        mod = self.config.getint('simulation', 'reset_between_nth_sample')
        mod = mod if mod else sample_idx + 1
        do_reset = sample_idx % mod == 0
        if do_reset:
            k.set_value(self.mem, self.init_membrane_potential())
        k.set_value(self.time, np.float32(self.dt))
        zeros_output_shape = np.zeros(self.output_shape, k.floatx())
        if self.tau_refrac > 0:
            k.set_value(self.refrac_until, zeros_output_shape)
        if self.spiketrain is not None:
            k.set_value(self.spiketrain, zeros_output_shape)
        k.set_value(self.last_spiketimes, zeros_output_shape - 1)
        k.set_value(self.v_thresh, zeros_output_shape + self._v_thresh)
        k.set_value(self.prospective_spikes, zeros_output_shape)
        k.set_value(self.missing_impulse, zeros_output_shape) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:23,代碼來源:ttfs_dyn_thresh.py

示例11: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def call(self, x, mask=None):
        """Layer functionality."""
        # Skip integration of input spikes in membrane potential. Directly
        # transmit new spikes. The output psp is nonzero wherever there has
        # been an input spike at any time during simulation.

        input_psp = MaxPooling2D.call(self, x)

        if self.spiketrain is not None:
            new_spikes = tf.math.logical_xor(
                k.greater(input_psp, 0), k.greater(self.last_spiketimes, 0))
            self.add_update([(self.spiketrain,
                              self.time * k.cast(new_spikes, k.floatx()))])

        psp = self.get_psp(input_psp)

        return k.cast(psp, k.floatx()) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:19,代碼來源:ttfs_dyn_thresh.py

示例12: reset_spikevars

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def reset_spikevars(self, sample_idx):
        """
        Reset variables present in spiking layers. Can be turned off for
        instance when a video sequence is tested.
        """

        mod = self.config.getint('simulation', 'reset_between_nth_sample')
        mod = mod if mod else sample_idx + 1
        do_reset = sample_idx % mod == 0
        if do_reset:
            k.set_value(self.mem, self.init_membrane_potential())
        k.set_value(self.time, np.float32(self.dt))
        zeros_output_shape = np.zeros(self.output_shape, k.floatx())
        if self.spiketrain is not None:
            k.set_value(self.spiketrain, zeros_output_shape)
        k.set_value(self.last_spiketimes, zeros_output_shape - 1) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:18,代碼來源:ttfs_corrective.py

示例13: cat_acc

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def cat_acc(y_true, y_pred):
    """Keras loss function for sparse_categorical_accuracy.

    :param y_true: tensor of true class labels.
    :param y_pred: class output scores from network.

    :returns: categorical accuracy.
    """
    # sparse_categorical_accuracy is broken in keras 2.2.4
    #   https://github.com/keras-team/keras/issues/11348#issuecomment-439969957
    # this is taken from e59570ae
    from tensorflow.keras import backend as K
    # reshape in case it's in shape (num_samples, 1) instead of (num_samples,)
    if K.ndim(y_true) == K.ndim(y_pred):
        y_true = K.squeeze(y_true, -1)
    # convert dense predictions to labels
    y_pred_labels = K.argmax(y_pred, axis=-1)
    y_pred_labels = K.cast(y_pred_labels, K.floatx())
    return K.cast(K.equal(y_true, y_pred_labels), K.floatx()) 
開發者ID:nanoporetech,項目名稱:medaka,代碼行數:21,代碼來源:training.py

示例14: _build_tf_cosine_similarity

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def _build_tf_cosine_similarity(max_rank=0, offset=1, eps=1e-12):
    # We build the graph (See utils.generic_utils.tf_recall_at_k for original implementation):
    tf_db = K.placeholder(ndim=2, dtype=K.floatx())  # Where to find
    tf_labels = K.placeholder(ndim=1, dtype=K.floatx())  # and their labels

    tf_batch_query = K.placeholder(ndim=2, dtype=K.floatx())  # Used in case of memory issues
    batch_labels = K.placeholder(ndim=2, dtype=K.floatx())  # and their labels

    all_representations_T = K.expand_dims(tf_db, axis=0)  # 1 x D x N
    batch_representations = K.expand_dims(tf_batch_query, axis=0)  # 1 x n x D
    sim = K.batch_dot(batch_representations, all_representations_T)  # 1 x n x N
    sim = K.squeeze(sim, axis=0)  # n x N
    sim /= tf.linalg.norm(tf_batch_query, axis=1, keepdims=True) + eps
    sim /= tf.linalg.norm(tf_db, axis=0, keepdims=True) + eps

    if max_rank > 0:  # computing r@K or mAP@K
        index_ranking = tf.nn.top_k(sim, k=max_rank + offset).indices
    else:
        index_ranking = tf.contrib.framework.argsort(sim, axis=-1, direction='DESCENDING', stable=True)

    top_k = index_ranking[:, offset:]
    tf_ranking = tf.gather(tf_labels, top_k)

    return tf_db, tf_labels, tf_batch_query, batch_labels, tf_ranking 
開發者ID:pierre-jacob,項目名稱:ICCV2019-Horde,代碼行數:26,代碼來源:global_metrics.py

示例15: _find_maxima

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import floatx [as 別名]
def _find_maxima(x, coordinate_scale=1, confidence_scale=255.0):

    x = K.cast(x, K.floatx())

    col_max = K.max(x, axis=1)
    row_max = K.max(x, axis=2)

    maxima = K.max(col_max, 1)
    maxima = K.expand_dims(maxima, -2) / confidence_scale

    cols = K.cast(K.argmax(col_max, -2), K.floatx())
    rows = K.cast(K.argmax(row_max, -2), K.floatx())
    cols = K.expand_dims(cols, -2) * coordinate_scale
    rows = K.expand_dims(rows, -2) * coordinate_scale

    maxima = K.concatenate([cols, rows, maxima], -2)

    return maxima 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:20,代碼來源:backend.py


注:本文中的tensorflow.keras.backend.floatx方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。