當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.expand_dims方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.expand_dims方法的具體用法?Python backend.expand_dims怎麽用?Python backend.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sequence_masking

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def sequence_masking(x, mask, mode=0, axis=None):
    """為序列條件mask的函數
    mask: 形如(batch_size, seq_len)的0-1矩陣;
    mode: 如果是0,則直接乘以mask;
          如果是1,則在padding部分減去一個大正數。
    axis: 序列所在軸,默認為1;
    """
    if mask is None or mode not in [0, 1]:
        return x
    else:
        if axis is None:
            axis = 1
        if axis == -1:
            axis = K.ndim(x) - 1
        assert axis > 0, 'axis muse be greater than 0'
        for _ in range(axis - 1):
            mask = K.expand_dims(mask, 1)
        for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1):
            mask = K.expand_dims(mask, K.ndim(mask))
        if mode == 0:
            return x * mask
        else:
            return x - (1 - mask) * 1e12 
開發者ID:bojone,項目名稱:bert4keras,代碼行數:25,代碼來源:backend.py

示例2: pool1d

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def pool1d(
    x,
    pool_size,
    strides=1,
    padding='valid',
    data_format=None,
    pool_mode='max'
):
    """向量序列的pool函數
    """
    x = K.expand_dims(x, 1)
    x = K.pool2d(
        x,
        pool_size=(1, pool_size),
        strides=(1, strides),
        padding=padding,
        data_format=data_format,
        pool_mode=pool_mode
    )
    return x[:, 0] 
開發者ID:bojone,項目名稱:bert4keras,代碼行數:22,代碼來源:backend.py

示例3: _rotation_matrix_zyz

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _rotation_matrix_zyz(self, params):
        phi = params[0] * 2 * np.pi - np.pi;       theta = params[1] * 2 * np.pi - np.pi;     psi_t = params[2] * 2 * np.pi - np.pi;
        
        loc_r = params[3:6] * 2 - 1
        
        
        a1 = self._rotation_matrix_axis(2, psi_t)       # first rotate about z axis for angle psi_t
        a2 = self._rotation_matrix_axis(1, theta)
        a3 = self._rotation_matrix_axis(2, phi)     
        rm = K.dot(K.dot(a3,a2),a1)
        
        rm = tf.transpose(rm)
        
        c = K.dot(-rm, K.expand_dims(loc_r))
        
        rm = K.flatten(rm)
        
        theta = K.concatenate([rm[:3], c[0], rm[3:6], c[1], rm[6:9], c[2]])

        return theta 
開發者ID:xulabs,項目名稱:aitom,代碼行數:22,代碼來源:RigidTransformation3DImputation.py

示例4: _mask_rotation_matrix_zyz

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _mask_rotation_matrix_zyz(self, params):
        phi = params[0] * 2 * np.pi - np.pi;       theta = params[1] * 2 * np.pi - np.pi;     psi_t = params[2] * 2 * np.pi - np.pi;
        
        loc_r = params[3:6] * 0    # magnitude of Fourier transformation is translation-invariant 
        
        
        a1 = self._rotation_matrix_axis(2, psi_t)
        a2 = self._rotation_matrix_axis(1, theta)
        a3 = self._rotation_matrix_axis(2, phi)     
        rm = K.dot(K.dot(a3,a2),a1)
        
        rm = tf.transpose(rm)
        
        c = K.dot(-rm, K.expand_dims(loc_r))
        
        rm = K.flatten(rm)
        
        theta = K.concatenate([rm[:3], c[0], rm[3:6], c[1], rm[6:9], c[2]])

        return theta 
開發者ID:xulabs,項目名稱:aitom,代碼行數:22,代碼來源:RigidTransformation3DImputation.py

示例5: _batch_mgrid

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _batch_mgrid(self, n_batch, *args, **kwargs):
        """
        create batch of orthogonal grids
        similar to np.mgrid
        Parameters
        ----------
        n_batch : int
            number of grids to create
        args : int
            number of points on each axis
        low : float
            minimum coordinate value
        high : float
            maximum coordinate value
        Returns
        -------
        grids : tf.Tensor [n_batch, len(args), args[0], ...]
            batch of orthogonal grids
        """
        grid = self._mgrid(*args, **kwargs)
        grid = tf.expand_dims(grid, 0)
        grids = tf.tile(grid, [n_batch] + [1 for _ in range(len(args) + 1)])

        return grids 
開發者ID:xulabs,項目名稱:aitom,代碼行數:26,代碼來源:RigidTransformation3DImputation.py

示例6: _build_tf_cosine_similarity

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _build_tf_cosine_similarity(max_rank=0, offset=1, eps=1e-12):
    # We build the graph (See utils.generic_utils.tf_recall_at_k for original implementation):
    tf_db = K.placeholder(ndim=2, dtype=K.floatx())  # Where to find
    tf_labels = K.placeholder(ndim=1, dtype=K.floatx())  # and their labels

    tf_batch_query = K.placeholder(ndim=2, dtype=K.floatx())  # Used in case of memory issues
    batch_labels = K.placeholder(ndim=2, dtype=K.floatx())  # and their labels

    all_representations_T = K.expand_dims(tf_db, axis=0)  # 1 x D x N
    batch_representations = K.expand_dims(tf_batch_query, axis=0)  # 1 x n x D
    sim = K.batch_dot(batch_representations, all_representations_T)  # 1 x n x N
    sim = K.squeeze(sim, axis=0)  # n x N
    sim /= tf.linalg.norm(tf_batch_query, axis=1, keepdims=True) + eps
    sim /= tf.linalg.norm(tf_db, axis=0, keepdims=True) + eps

    if max_rank > 0:  # computing r@K or mAP@K
        index_ranking = tf.nn.top_k(sim, k=max_rank + offset).indices
    else:
        index_ranking = tf.contrib.framework.argsort(sim, axis=-1, direction='DESCENDING', stable=True)

    top_k = index_ranking[:, offset:]
    tf_ranking = tf.gather(tf_labels, top_k)

    return tf_db, tf_labels, tf_batch_query, batch_labels, tf_ranking 
開發者ID:pierre-jacob,項目名稱:ICCV2019-Horde,代碼行數:26,代碼來源:global_metrics.py

示例7: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def call(self, x, **kwargs):
        assert isinstance(x, list)
        inp_a, inp_b = x
        last_state = K.expand_dims(inp_b[:, -1, :], 1)
        m = []
        for i in range(self.output_dim):
            outp_a = inp_a * self.W[i]
            outp_last = last_state * self.W[i]
            outp_a = K.l2_normalize(outp_a, -1)
            outp_last = K.l2_normalize(outp_last, -1)
            outp = K.batch_dot(outp_a, outp_last, axes=[2, 2])
            m.append(outp)
        if self.output_dim > 1:
            persp = K.concatenate(m, 2)
        else:
            persp = m[0]
        return [persp, persp] 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:19,代碼來源:keras_layers.py

示例8: _find_maxima

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _find_maxima(x, coordinate_scale=1, confidence_scale=255.0):

    x = K.cast(x, K.floatx())

    col_max = K.max(x, axis=1)
    row_max = K.max(x, axis=2)

    maxima = K.max(col_max, 1)
    maxima = K.expand_dims(maxima, -2) / confidence_scale

    cols = K.cast(K.argmax(col_max, -2), K.floatx())
    rows = K.cast(K.argmax(row_max, -2), K.floatx())
    cols = K.expand_dims(cols, -2) * coordinate_scale
    rows = K.expand_dims(rows, -2) * coordinate_scale

    maxima = K.concatenate([cols, rows, maxima], -2)

    return maxima 
開發者ID:jgraving,項目名稱:DeepPoseKit,代碼行數:20,代碼來源:backend.py

示例9: _spectrogram_mono

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _spectrogram_mono(self, x):
        '''x.shape : (None, 1, len_src),
        returns 2D batch of a mono power-spectrogram'''
        x = K.permute_dimensions(x, [0, 2, 1])
        x = K.expand_dims(x, 3)  # add a dummy dimension (channel axis)
        subsample = (self.n_hop, 1)
        output_real = K.conv2d(
            x,
            self.dft_real_kernels,
            strides=subsample,
            padding=self.padding,
            data_format='channels_last',
        )
        output_imag = K.conv2d(
            x,
            self.dft_imag_kernels,
            strides=subsample,
            padding=self.padding,
            data_format='channels_last',
        )
        output = output_real ** 2 + output_imag ** 2
        # now shape is (batch_sample, n_frame, 1, freq)
        if self.image_data_format == 'channels_last':
            output = K.permute_dimensions(output, [0, 3, 1, 2])
        else:
            output = K.permute_dimensions(output, [0, 2, 3, 1])
        return output 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:29,代碼來源:time_frequency.py

示例10: relative_logits_1d

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def relative_logits_1d(self, q, rel_k, H, W, transpose_mask):
        rel_logits = tf.einsum('bhxyd,md->bhxym', q, rel_k)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads * H, W, 2 * W - 1])
        rel_logits = self.rel_to_abs(rel_logits)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H, W, W])
        rel_logits = K.expand_dims(rel_logits, axis=3)
        rel_logits = K.tile(rel_logits, [1, 1, 1, H, 1, 1])
        rel_logits = K.permute_dimensions(rel_logits, transpose_mask)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H * W, H * W])
        return rel_logits 
開發者ID:titu1994,項目名稱:keras-attention-augmented-convs,代碼行數:12,代碼來源:attn_augconv.py

示例11: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def call(self, inputs):

        #To channels last
        x = tf.transpose(inputs[0], [0, 3, 1, 2])

        #Get weight and bias modulations
        #Make sure w's shape is compatible with self.kernel
        w = K.expand_dims(K.expand_dims(K.expand_dims(inputs[1], axis = 1), axis = 1), axis = -1)

        #Add minibatch layer to weights
        wo = K.expand_dims(self.kernel, axis = 0)

        #Modulate
        weights = wo * (w+1)

        #Demodulate
        if self.demod:
            d = K.sqrt(K.sum(K.square(weights), axis=[1,2,3], keepdims = True) + 1e-8)
            weights = weights / d

        #Reshape/scale input
        x = tf.reshape(x, [1, -1, x.shape[2], x.shape[3]]) # Fused => reshape minibatch to convolution groups.
        w = tf.reshape(tf.transpose(weights, [1, 2, 3, 0, 4]), [weights.shape[1], weights.shape[2], weights.shape[3], -1])

        x = tf.nn.conv2d(x, w,
                strides=self.strides,
                padding="SAME",
                data_format="NCHW")

        # Reshape/scale output.
        x = tf.reshape(x, [-1, self.filters, x.shape[2], x.shape[3]]) # Fused => reshape convolution groups back to minibatch.
        x = tf.transpose(x, [0, 2, 3, 1])

        return x 
開發者ID:manicman1999,項目名稱:StyleGAN2-Tensorflow-2.0,代碼行數:36,代碼來源:conv_mod.py

示例12: _single_matmul

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def _single_matmul(self, x, mult):
        x = K.expand_dims(x, -2)
        y = tf.matmul(x, mult)[...,0,:]
        return y 
開發者ID:adalca,項目名稱:neuron,代碼行數:6,代碼來源:layers.py

示例13: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def call(self, x):
        # get new mean and count
        this_bs_int = K.shape(x)[0]
        new_mean, new_count = _mean_update(self.mean, self.count, x, self.cap)
        
        # update op
        updates = [(self.count, new_count), (self.mean, new_mean)]
        self.add_update(updates, x)

        # prep for broadcasting :(
        p = tf.concat((K.reshape(this_bs_int, (1,)), K.shape(self.mean)), 0)
        z = tf.ones(p)
        
        # the first few 1000 should not matter that much towards this cost
        return K.minimum(1., new_count/self.cap) * (z * K.expand_dims(new_mean, 0)) 
開發者ID:adalca,項目名稱:neuron,代碼行數:17,代碼來源:layers.py

示例14: call

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def call(self, inputs, **kwargs):
        """ student t-distribution, as same as used in t-SNE algorithm.
                 q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it.
        Arguments:
            inputs: the variable containing data, shape=(n_samples, n_features)
        Return:
            q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters)
        """
        q = 1.0 / (1.0 + (K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2) / self.alpha))
        q **= (self.alpha + 1.0) / 2.0
        q = K.transpose(K.transpose(q) / K.sum(q, axis=1))
        return q 
開發者ID:XifengGuo,項目名稱:DEC-DA,代碼行數:14,代碼來源:FcDEC.py

示例15: mi_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import expand_dims [as 別名]
def mi_loss(self, y_true, y_pred):
        """Mutual information loss computed from the joint
           distribution matrix and the marginals

        Arguments:
            y_true (tensor): Not used since this is
                unsupervised learning
            y_pred (tensor): stack of softmax predictions for
                the Siamese latent vectors (Z and Zbar)
        """
        size = self.args.batch_size
        n_labels = y_pred.shape[-1]
        # lower half is Z
        Z = y_pred[0: size, :]
        Z = K.expand_dims(Z, axis=2)
        # upper half is Zbar
        Zbar = y_pred[size: y_pred.shape[0], :]
        Zbar = K.expand_dims(Zbar, axis=1)
        # compute joint distribution (Eq 10.3.2 & .3)
        P = K.batch_dot(Z, Zbar)
        P = K.sum(P, axis=0)
        # enforce symmetric joint distribution (Eq 10.3.4)
        P = (P + K.transpose(P)) / 2.0
        # normalization of total probability to 1.0
        P = P / K.sum(P)
        # marginal distributions (Eq 10.3.5 & .6)
        Pi = K.expand_dims(K.sum(P, axis=1), axis=1)
        Pj = K.expand_dims(K.sum(P, axis=0), axis=0)
        Pi = K.repeat_elements(Pi, rep=n_labels, axis=1)
        Pj = K.repeat_elements(Pj, rep=n_labels, axis=0)
        P = K.clip(P, K.epsilon(), np.finfo(float).max)
        Pi = K.clip(Pi, K.epsilon(), np.finfo(float).max)
        Pj = K.clip(Pj, K.epsilon(), np.finfo(float).max)
        # negative MI loss (Eq 10.3.7)
        neg_mi = K.sum((P * (K.log(Pi) + K.log(Pj) - K.log(P))))
        # each head contribute 1/n_heads to the total loss
        return neg_mi/self.args.heads 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:39,代碼來源:iic-13.5.1.py


注:本文中的tensorflow.keras.backend.expand_dims方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。