當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.eval方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.eval方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.eval方法的具體用法?Python backend.eval怎麽用?Python backend.eval使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.eval方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_amplitude_to_decibel

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_amplitude_to_decibel():
    """test for backend_keras.amplitude_to_decibel"""
    from kapre.backend_keras import amplitude_to_decibel

    x = np.array([[1e-20, 1e-5, 1e-3, 5e-2], [0.3, 1.0, 20.5, 9999]])  # random positive numbers

    amin = 1e-5
    dynamic_range = 80.0

    x_decibel = 10 * np.log10(np.maximum(x, amin))
    x_decibel = x_decibel - np.max(x_decibel, axis=(1,), keepdims=True)
    x_decibel_ref = np.maximum(x_decibel, -1 * dynamic_range)

    x_var = K.variable(x)
    x_decibel_kapre = amplitude_to_decibel(x_var, amin, dynamic_range)

    assert np.allclose(K.eval(x_decibel_kapre), x_decibel_ref, atol=TOL) 
開發者ID:keunwoochoi,項目名稱:kapre,代碼行數:19,代碼來源:test_backend.py

示例2: on_epoch_end

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def on_epoch_end(self, epochs, logs):
    max_variance = -1

    for layer in self.model.layers:
      if layer.__class__.__name__ in [
          "BatchNormalization",
          "QBatchNormalization"
      ]:
        variance = np.max(layer.get_weights()[-1])
        if variance > max_variance:
          max_variance = variance

    if max_variance > 32 and self.learning_rate_factor < 100:
      learning_rate = K.get_value(self.model.optimizer.learning_rate)
      self.learning_rate_factor /= 2.0
      print("***** max_variance is {} / lr is {} *****".format(
          max_variance, learning_rate))
      K.eval(K.update(
          self.model.optimizer.learning_rate, learning_rate / 2.0
      )) 
開發者ID:google,項目名稱:qkeras,代碼行數:22,代碼來源:example_mnist_bn.py

示例3: test_binary_auto

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_binary_auto():
  """Test binary auto scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer = binary(alpha="auto")
    q = K.eval(quantizer(x))

    result = get_weight_scale(quantizer, q)
    expected = m / 2.0
    logging.info("expect %s", expected)
    logging.info("result %s", result)
    assert_allclose(result, expected, rtol=0.02) 
開發者ID:google,項目名稱:qkeras,代碼行數:21,代碼來源:qalpha_test.py

示例4: test_ternary_auto

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_ternary_auto():
  """Test ternary auto scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer = ternary(alpha="auto")
    q = K.eval(quantizer(x))

    d = m/3.0
    result = np.mean(get_weight_scale(quantizer, q))
    expected = (m + d) / 2.0
    assert_allclose(result, expected, rtol=0.02) 
開發者ID:google,項目名稱:qkeras,代碼行數:20,代碼來源:qalpha_test.py

示例5: test_ternary_auto_po2

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_ternary_auto_po2():
  """Test ternary auto_po2 scale quantizer."""

  np.random.seed(42)
  N = 1000000
  m_list = [1.0, 0.1, 0.01, 0.001]

  for m in m_list:
    x = np.random.uniform(-m, m, (N, 10)).astype(K.floatx())
    x = K.constant(x)

    quantizer_ref = ternary(alpha="auto")
    quantizer = ternary(alpha="auto_po2")

    q_ref = K.eval(quantizer_ref(x))
    q = K.eval(quantizer(x))

    ref = get_weight_scale(quantizer_ref, q_ref)

    expected = np.power(2.0, np.round(np.log2(ref)))
    result = get_weight_scale(quantizer, q)

    assert_allclose(result, expected, rtol=0.0001) 
開發者ID:google,項目名稱:qkeras,代碼行數:25,代碼來源:qalpha_test.py

示例6: test_stochastic_ternary

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_stochastic_ternary(bound, alpha, temperature, expected_values, expected_scale):
  np.random.seed(42)
  K.set_learning_phase(1)

  n = 1000

  x = np.random.uniform(-bound, bound, size=(n, 10))
  x = np.sort(x, axis=1)

  s = stochastic_ternary(alpha=alpha, temperature=temperature)

  y = K.eval(s(K.constant(x)))
  scale = K.eval(s.scale).astype(np.float32)[0]

  ty = np.zeros_like(s)
  for i in range(n):
    ty = ty + (y[i] / scale)

  result = (ty/n).astype(np.float32)

  assert_allclose(result, expected_values, atol=0.1)
  assert_allclose(scale, expected_scale, rtol=0.1) 
開發者ID:google,項目名稱:qkeras,代碼行數:24,代碼來源:qactivation_test.py

示例7: test_huber_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_huber_loss():
    a = np.array([1.,  1.5, 2., 4.])
    b = np.array([1.5, 1.,  4., 2.])
    assert_allclose(K.eval(huber_loss(a, b, 1.)), np.array([.125, .125, 1.5, 1.5]))
    assert_allclose(K.eval(huber_loss(a, b, 3.)), np.array([.125, .125, 2., 2.]))
    assert_allclose(K.eval(huber_loss(a, b, np.inf)), np.array([.125, .125, 2., 2.])) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:8,代碼來源:test_util.py

示例8: z_effect

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def z_effect(model, gen, z_layer_name, nb_samples=100, do_plot=False, tqdm=tqdm):
    """
    compute the effect of each z dimension on the final outcome via derivatives
    we attempt this by taking gradients as in
    https://stackoverflow.com/questions/39561560/getting-gradient-of-model-output-w-r-t-weights-using-keras

    e.g. layer name: 'img-img-dense-vae_ae_dense_sample'
    """

    outputTensor = model.outputs[0]
    inner = model.get_layer(z_layer_name).get_output_at(1)

    # compute gradients
    gradients = K.gradients(outputTensor, inner)
    assert len(gradients) == 1, "wrong gradients"

    # would be nice to be able to do this with K.eval() as opposed to explicit tensorflow sessions.
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        evaluated_gradients = [None] * nb_samples
        for i in tqdm(range(nb_samples)):
            sample = next(gen)
            fdct = {model.get_input_at(0): sample[0]}
            evaluated_gradients[i] = sess.run(gradients, feed_dict=fdct)[0]

    all_gradients = np.mean(np.abs(np.vstack(evaluated_gradients)), 0)

    if do_plot:
        plt.figure()
        plt.plot(np.sort(all_gradients))
        plt.xlabel('sorted z index')
        plt.ylabel('mean(|grad|)')
        plt.show()

    return all_gradients 
開發者ID:adalca,項目名稱:neuron,代碼行數:38,代碼來源:vae_tools.py

示例9: get_weights

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def get_weights(layer):
  weights = layer.get_weights()
  out = copy.deepcopy(weights)
  for j, weight in enumerate(weights):
    if hasattr(layer, "get_quantizers") and layer.get_quantizers()[j]:
      out[j] = K.eval(
          layer.get_quantizers()[j](K.constant(weight)))

  return out 
開發者ID:google,項目名稱:qkeras,代碼行數:11,代碼來源:qtools_util.py

示例10: get_weight_scale

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def get_weight_scale(quantizer, x=None):
  """Gets the scales of weights for (stochastic_)binary and ternary quantizers.

  Arguments:
    quantizer: A binary or teneray quantizer class.
    x: A weight tensor.  We keep it here for now for backward compatibility.

  Returns:
    Weight scale per channel for binary and ternary
    quantizers with auto or auto_po2 alpha/threshold.
  """
  if hasattr(quantizer, "scale") and quantizer.scale is not None:
    return K.eval(quantizer.scale)
  return 1.0 
開發者ID:google,項目名稱:qkeras,代碼行數:16,代碼來源:quantizers.py

示例11: test_stochastic_binary

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def test_stochastic_binary():
  np.random.seed(42)
  K.set_learning_phase(1)

  x = np.random.uniform(-0.01, 0.01, size=10)
  x = np.sort(x)

  s = stochastic_binary(alpha="auto_po2")

  ty = np.zeros_like(s)
  ts = 0.0

  n = 1000

  for _ in range(n):
    y = K.eval(s(K.constant(x)))
    scale = K.eval(s.scale)[0]
    ts = ts + scale
    ty = ty + (y / scale)

  result = (ty/n).astype(np.float32)
  scale = np.array([ts/n])

  expected = np.array(
      [-1., -1., -1., -0.852, 0.782, 0.768, 0.97, 0.978, 1.0, 1.0]
  ).astype(np.float32)
  expected_scale = np.array([0.003906])

  assert_allclose(result, expected, atol=0.1)
  assert_allclose(scale, expected_scale, rtol=0.1) 
開發者ID:google,項目名稱:qkeras,代碼行數:32,代碼來源:qactivation_test.py

示例12: on_epoch_end

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def on_epoch_end(self, epoch: int, logs: Dict = None):
        """
        Check the loss value at the end of an epoch
        Args:
            epoch (int): epoch id
            logs (dict): log history

        Returns: None

        """
        logs = logs or {}
        loss = logs.get('loss')
        last_saved_epoch, last_metric, last_file = self._get_checkpoints()
        if last_saved_epoch is not None:
            if last_saved_epoch + self.patience <= epoch:
                self.model.stop_training = True
                logger.info('%s does not improve after %d, stopping '
                            'the fitting...' % (self.monitor, self.patience))

        if loss is not None:
            self.losses.append(loss)
            if np.isnan(loss) or np.isinf(loss):
                if self.verbose:
                    logger.info("Nan loss found!")
                self._reduce_lr_and_load(last_file)
                if self.verbose:
                    logger.info("Now lr is %s." % float(
                        kb.eval(self.model.optimizer.lr)))
            else:
                if len(self.losses) > 1:
                    if self.losses[-1] > (self.losses[-2] * 100):
                        self._reduce_lr_and_load(last_file)
                        if self.verbose:
                            logger.info(
                                "Loss shot up from %.3f to %.3f! Reducing lr " % (
                                    self.losses[-1], self.losses[-2]))
                            logger.info("Now lr is %s." % float(
                                kb.eval(self.model.optimizer.lr))) 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:40,代碼來源:callbacks.py

示例13: _reduce_lr_and_load

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def _reduce_lr_and_load(self, last_file):
        old_value = float(kb.eval(self.model.optimizer.lr))
        self.model.reset_states()
        self.model.optimizer.lr = old_value * self.factor

        opt_dict = self.model.optimizer.get_config()
        self.model.compile(self.model.optimizer.__class__(**opt_dict), self.model.loss)
        if last_file is not None:
            self.model.load_weights(last_file)
            if self.verbose:
                logger.info("Load weights %s" % last_file)
        else:
            logger.info("No weights were loaded") 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:15,代碼來源:callbacks.py

示例14: save

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def save(self, fname: str = None) -> None:
        """
        Save the model parameters into <<fname>>_opt.json (or <<ser_file>>_opt.json)
        and model weights into <<fname>>.h5 (or <<ser_file>>.h5)
        Args:
            fname: file_path to save model. If not explicitly given seld.opt["ser_file"] will be used

        Returns:
            None
        """
        if not fname:
            fname = self.save_path
        else:
            fname = Path(fname).resolve()

        if not fname.parent.is_dir():
            raise ConfigError("Provided save path is incorrect!")
        else:
            opt_path = f"{fname}_opt.json"
            weights_path = f"{fname}.h5"
            log.info(f"[saving model to {opt_path}]")
            self.model.save_weights(weights_path)

        # if model was loaded from one path and saved to another one
        # then change load_path to save_path for config
        self.opt["epochs_done"] = self.epochs_done
        if isinstance(self.opt.get("learning_rate", None), float):
            self.opt["final_learning_rate"] = (K.eval(self.optimizer.lr) /
                                               (1. + K.eval(self.optimizer.decay) * self.batches_seen))

        if self.opt.get("load_path") and self.opt.get("save_path"):
            if self.opt.get("save_path") != self.opt.get("load_path"):
                self.opt["load_path"] = str(self.opt["save_path"])
        save_json(self.opt, opt_path)

    # noinspection PyUnusedLocal 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:38,代碼來源:keras_classification_model.py

示例15: quantized_model_debug

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import eval [as 別名]
def quantized_model_debug(model, X_test, plot=False):
  """Debugs and plots model weights and activations."""
  outputs = []
  output_names = []

  for layer in model.layers:
    if layer.__class__.__name__ in REGISTERED_LAYERS:
      output_names.append(layer.name)
      outputs.append(layer.output)

  model_debug = Model(inputs=model.inputs, outputs=outputs)

  y_pred = model_debug.predict(X_test)

  print("{:30} {: 8.4f} {: 8.4f}".format(
      "input", np.min(X_test), np.max(X_test)))

  for n, p in zip(output_names, y_pred):
    layer = model.get_layer(n)
    if layer.__class__.__name__ == "QActivation":
      alpha = get_weight_scale(layer.activation, p)
    else:
      alpha = 1.0
    print(
        "{:30} {: 8.4f} {: 8.4f}".format(n, np.min(p / alpha),
                                         np.max(p / alpha)),
        end="")
    if alpha != 1.0:
      print(" a[{: 8.4f} {:8.4f}]".format(np.min(alpha), np.max(alpha)))
    if plot and layer.__class__.__name__ in [
        "QConv2D", "QDense", "QActivation"
    ]:
      plt.hist(p.flatten(), bins=25)
      plt.title(layer.name + "(output)")
      plt.show()
    alpha = None
    for i, weights in enumerate(layer.get_weights()):
      if hasattr(layer, "get_quantizers") and layer.get_quantizers()[i]:
        weights = K.eval(layer.get_quantizers()[i](K.constant(weights)))
        if i == 0 and layer.__class__.__name__ in [
            "QConv1D", "QConv2D", "QDense"
        ]:
          alpha = get_weight_scale(layer.get_quantizers()[i], weights)
          # if alpha is 0, let's remove all weights.
          alpha_mask = (alpha == 0.0)
          weights = np.where(alpha_mask, weights * alpha, weights / alpha)
          if plot:
            plt.hist(weights.flatten(), bins=25)
            plt.title(layer.name + "(weights)")
            plt.show()
      print(" ({: 8.4f} {: 8.4f})".format(np.min(weights), np.max(weights)),
            end="")
    if alpha is not None and isinstance(alpha, np.ndarray):
      print(" a({: 10.6f} {: 10.6f})".format(
          np.min(alpha), np.max(alpha)), end="")
    print("") 
開發者ID:google,項目名稱:qkeras,代碼行數:58,代碼來源:utils.py


注:本文中的tensorflow.keras.backend.eval方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。