當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.epsilon方法代碼示例

本文整理匯總了Python中tensorflow.keras.backend.epsilon方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.epsilon方法的具體用法?Python backend.epsilon怎麽用?Python backend.epsilon使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.epsilon方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def main():
    model = create_model(trainable=TRAINABLE)
    model.summary()

    if TRAINABLE:
        model.load_weights(WEIGHTS)

    train_datagen = DataGenerator(TRAIN_CSV)
    validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))

    optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
    model.compile(loss=loss, optimizer=optimizer, metrics=[])
    
    checkpoint = ModelCheckpoint("model-{val_dice:.2f}.h5", monitor="val_dice", verbose=1, save_best_only=True,
                                 save_weights_only=True, mode="max")
    stop = EarlyStopping(monitor="val_dice", patience=PATIENCE, mode="max")
    reduce_lr = ReduceLROnPlateau(monitor="val_dice", factor=0.2, patience=5, min_lr=1e-6, verbose=1, mode="max")

    model.fit_generator(generator=train_datagen,
                        epochs=EPOCHS,
                        callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
                        workers=THREADS,
                        use_multiprocessing=MULTI_PROCESSING,
                        shuffle=True,
                        verbose=1) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:27,代碼來源:train.py

示例2: focal_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def focal_loss(alpha=0.9, gamma=2):
  def focal_loss_with_logits(logits, targets, alpha, gamma, y_pred):
    weight_a = alpha * (1 - y_pred) ** gamma * targets
    weight_b = (1 - alpha) * y_pred ** gamma * (1 - targets)
    
    return (tf.math.log1p(tf.exp(-tf.abs(logits))) + tf.nn.relu(-logits)) * (weight_a + weight_b) + logits * weight_b

  def loss(y_true, y_pred):
    y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(), 1 - tf.keras.backend.epsilon())
    logits = tf.math.log(y_pred / (1 - y_pred))

    loss = focal_loss_with_logits(logits=logits, targets=y_true, alpha=alpha, gamma=gamma, y_pred=y_pred)

    return tf.reduce_mean(loss)

  return loss 
開發者ID:lars76,項目名稱:object-localization,代碼行數:18,代碼來源:train.py

示例3: main

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def main():
    model = create_model()

    train_datagen = DataGenerator(TRAIN_CSV)
    validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))

    optimizer = Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
    model.compile(loss={"coords" : log_mse, "classes" : focal_loss()}, loss_weights={"coords" : 1, "classes" : 1}, optimizer=optimizer, metrics=[])
    checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
                                 save_weights_only=True, mode="max")
    stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
    reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")

    model.summary()

    model.fit_generator(generator=train_datagen,
                        epochs=EPOCHS,
                        callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
                        workers=THREADS,
                        use_multiprocessing=MULTI_PROCESSING,
                        shuffle=True,
                        verbose=1) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:24,代碼來源:train.py

示例4: focal_loss_binary

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def focal_loss_binary(y_true, y_pred):
    """Binary cross-entropy focal loss
    """
    gamma = 2.0
    alpha = 0.25

    pt_1 = tf.where(tf.equal(y_true, 1),
                    y_pred,
                    tf.ones_like(y_pred))
    pt_0 = tf.where(tf.equal(y_true, 0),
                    y_pred,
                    tf.zeros_like(y_pred))

    epsilon = K.epsilon()
    # clip to prevent NaN and Inf
    pt_1 = K.clip(pt_1, epsilon, 1. - epsilon)
    pt_0 = K.clip(pt_0, epsilon, 1. - epsilon)

    weight = alpha * K.pow(1. - pt_1, gamma)
    fl1 = -K.sum(weight * K.log(pt_1))
    weight = (1 - alpha) * K.pow(pt_0, gamma)
    fl0 = -K.sum(weight * K.log(1. - pt_0))

    return fl1 + fl0 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:26,代碼來源:loss.py

示例5: focal_loss_categorical

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def focal_loss_categorical(y_true, y_pred):
    """Categorical cross-entropy focal loss"""
    gamma = 2.0
    alpha = 0.25

    # scale to ensure sum of prob is 1.0
    y_pred /= K.sum(y_pred, axis=-1, keepdims=True)

    # clip the prediction value to prevent NaN and Inf
    epsilon = K.epsilon()
    y_pred = K.clip(y_pred, epsilon, 1. - epsilon)

    # calculate cross entropy
    cross_entropy = -y_true * K.log(y_pred)

    # calculate focal loss
    weight = alpha * K.pow(1 - y_pred, gamma)
    cross_entropy *= weight

    return K.sum(cross_entropy, axis=-1) 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:22,代碼來源:loss.py

示例6: mi_loss

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def mi_loss(self, y_true, y_pred):
        """ MINE loss function

        Arguments:
            y_true (tensor): Not used since this is
                unsupervised learning
            y_pred (tensor): stack of predictions for
                joint T(x,y) and marginal T(x,y)
        """
        size = self.args.batch_size
        # lower half is pred for joint dist
        pred_xy = y_pred[0: size, :]

        # upper half is pred for marginal dist
        pred_x_y = y_pred[size : y_pred.shape[0], :]
        loss = K.mean(K.exp(pred_x_y))
        loss = K.clip(loss, K.epsilon(), np.finfo(float).max)
        loss = K.mean(pred_xy) - K.log(loss)
        return -loss 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:21,代碼來源:mine-13.8.1.py

示例7: surv_likelihood

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def surv_likelihood(n_intervals):
  """Create custom Keras loss function for neural network survival model. 
  Arguments
      n_intervals: the number of survival time intervals
  Returns
      Custom loss function that can be used with Keras
  """
  def loss(y_true, y_pred):
    """
    Required to have only 2 arguments by Keras.
    Arguments
        y_true: Tensor.
          First half of the values is 1 if individual survived that interval, 0 if not.
          Second half of the values is for individuals who failed, and is 1 for time interval during which failure occured, 0 for other intervals.
          See make_surv_array function.
        y_pred: Tensor, predicted survival probability (1-hazard probability) for each time interval.
    Returns
        Vector of losses for this minibatch.
    """
    cens_uncens = 1. + y_true[:,0:n_intervals] * (y_pred-1.) #component for all individuals
    uncens = 1. - y_true[:,n_intervals:2*n_intervals] * y_pred #component for only uncensored individuals
    return K.sum(-K.log(K.clip(K.concatenate((cens_uncens,uncens)),K.epsilon(),None)),axis=-1) #return -log likelihood
  return loss 
開發者ID:MGensheimer,項目名稱:nnet-survival,代碼行數:25,代碼來源:nnet_survival.py

示例8: mcor

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def mcor(y_true, y_pred):
    # matthews_correlation
    y_pred_pos = K.round(K.clip(y_pred, 0, 1))
    y_pred_neg = 1 - y_pred_pos

    y_pos = K.round(K.clip(y_true, 0, 1))
    y_neg = 1 - y_pos

    tp = K.sum(y_pos * y_pred_pos)
    tn = K.sum(y_neg * y_pred_neg)

    fp = K.sum(y_neg * y_pred_pos)
    fn = K.sum(y_pos * y_pred_neg)

    numerator = (tp * tn - fp * fn)
    denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

    return numerator / (denominator + K.epsilon()) 
開發者ID:RichardBJ,項目名稱:Deep-Channel,代碼行數:20,代碼來源:predictor.py

示例9: mcor

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def mcor(y_true, y_pred):
    # Matthews correlation
    y_pred_pos = K.round(K.clip(y_pred, 0, 1))
    y_pred_neg = 1 - y_pred_pos

    y_pos = K.round(K.clip(y_true, 0, 1))
    y_neg = 1 - y_pos

    tp = K.sum(y_pos * y_pred_pos)
    tn = K.sum(y_neg * y_pred_neg)

    fp = K.sum(y_neg * y_pred_pos)
    fn = K.sum(y_pos * y_pred_neg)

    numerator = (tp * tn - fp * fn)
    denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

    return numerator / (denominator + K.epsilon()) 
開發者ID:RichardBJ,項目名稱:Deep-Channel,代碼行數:20,代碼來源:deepchannel_train.py

示例10: recall

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def recall(y_true, y_pred):
    """Precision for foreground pixels.

    Calculates pixelwise recall TP/(TP + FN).

    """
    # count true positives
    truth = K.round(K.clip(y_true, K.epsilon(), 1))
    pred_pos = K.round(K.clip(y_pred, K.epsilon(), 1))
    true_pos = K.sum(K.cast(K.all(K.stack([truth, pred_pos], axis=2), axis=2),
                            dtype='float64'))
    truth_ct = K.sum(K.round(K.clip(y_true, K.epsilon(), 1)))
    if truth_ct == 0:
        return 0
    recall = true_pos/truth_ct

    return recall 
開發者ID:CosmiQ,項目名稱:solaris,代碼行數:19,代碼來源:metrics.py

示例11: result

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def result(self):
        recall = tf.math.divide_no_nan(self.tp, self.tp + self.fn)
        precision = tf.math.divide_no_nan(self.tp, self.tp + self.fp)
        f1 = tf.math.divide_no_nan(2 * precision * recall, precision + recall + K.epsilon())
        return f1 
開發者ID:tech-srl,項目名稱:code2vec,代碼行數:7,代碼來源:keras_words_subtoken_metrics.py

示例12: _cosine_dist

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def _cosine_dist(x, y):
  """Computes the inner product (cosine distance) between two tensors.

  Parameters
  ----------
  x: tf.Tensor
    Input Tensor
  y: tf.Tensor
    Input Tensor
  """
  denom = (backend.sqrt(backend.sum(tf.square(x)) * backend.sum(tf.square(y))) +
           backend.epsilon())
  return backend.dot(x, tf.transpose(y)) / denom 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:15,代碼來源:layers.py

示例13: __init__

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def __init__(self,
               batch_size,
               n_input=128,
               gaussian_expand=False,
               init='glorot_uniform',
               activation='tanh',
               epsilon=1e-3,
               momentum=0.99,
               **kwargs):
    """
    Parameters
    ----------
    batch_size: int
      number of molecules in a batch
    n_input: int, optional
      number of features for each input molecule
    gaussian_expand: boolean. optional
      Whether to expand each dimension of atomic features by gaussian histogram
    init: str, optional
      Weight initialization for filters.
    activation: str, optional
      Activation function applied
    """
    super(WeaveGather, self).__init__(**kwargs)
    self.n_input = n_input
    self.batch_size = batch_size
    self.gaussian_expand = gaussian_expand
    self.init = init  # Set weight initialization
    self.activation = activation  # Get activations
    self.activation_fn = activations.get(activation)
    self.epsilon = epsilon
    self.momentum = momentum 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:34,代碼來源:layers.py

示例14: get_config

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def get_config(self):
    config = super(WeaveGather, self).get_config()
    config['batch_size'] = self.batch_size
    config['n_input'] = self.n_input
    config['gaussian_expand'] = self.gaussian_expand
    config['init'] = self.init
    config['activation'] = self.activation
    config['epsilon'] = self.epsilon
    config['momentum'] = self.momentum
    return config 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:12,代碼來源:layers.py

示例15: normalize_A

# 需要導入模塊: from tensorflow.keras import backend [as 別名]
# 或者: from tensorflow.keras.backend import epsilon [as 別名]
def normalize_A(A):
    """
    Computes symmetric normalization of A, dealing with sparse A and batch mode
    automatically.
    :param A: Tensor or SparseTensor with rank k = {2, 3}.
    :return: Tensor or SparseTensor of rank k.
    """
    D = degrees(A)
    D = tf.sqrt(D)[:, None] + K.epsilon()
    perm = (0, 2, 1) if K.ndim(A) == 3 else (1, 0)
    output = (A / D) / ops.transpose(D, perm=perm)

    return output 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:15,代碼來源:graph.py


注:本文中的tensorflow.keras.backend.epsilon方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。