當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.is_tensor方法代碼示例

本文整理匯總了Python中tensorflow.is_tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.is_tensor方法的具體用法?Python tensorflow.is_tensor怎麽用?Python tensorflow.is_tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.is_tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convert_to_binary_classification_predictions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def _convert_to_binary_classification_predictions(predictions):
  """Converts a `Tensor` into a set of binary classification predictions.

  This function checks that the given `Tensor` is floating-point, and that it is
  trivially convertible to rank-1, i.e. has only one "nontrivial" dimension
  (e.g. the shapes [1000] and [1, 1, None, 1] are allowed, but [None, 1, None]
  and [50, 10] are not). If it satisfies these conditions, then it is reshaped
  to be rank-1 (if necessary) and returned.

  Args:
    predictions: a rank-1 floating-point `Tensor` of predictions.

  Returns:
    The predictions `Tensor`, reshaped to be rank-1, if necessary.

  Raises:
    TypeError: if "predictions" is not a floating-point `Tensor`.
    ValueError: if "predictions" is not trivially convertible to rank-1.
  """
  if not tf.is_tensor(predictions):
    raise TypeError("predictions must be a Tensor")
  if not predictions.dtype.is_floating:
    raise TypeError("predictions must be floating-point")

  return helpers.convert_to_1d_tensor(predictions, name="predictions") 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:27,代碼來源:loss.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def __init__(self, value, auto_cast):
    """Creates a new `_StaticExplicitDeferredTensorState`.

    Args:
      value: `Tensor`-like, the value of the `DeferredTensor`.
      auto_cast: `Boolean`, whether the value should be automatically
        type-promoted, if necessary. Only applies if "value" is a `Tensor`:
          non-`Tensor` types are always auto-castable.
    """
    assert not callable(value)
    self._value = value
    self._auto_cast = auto_cast

    # For non-Tensor types, we make a deep copy to make extra-certain that it is
    # immutable (since we'll hash it).
    if not tf.is_tensor(self._value):
      self._value = copy.deepcopy(self._value)

    # We memoize the hash, since it can be expensive to compute.
    self._hash = None 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:22,代碼來源:deferred_tensor.py

示例3: __eq__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def __eq__(self, other):
    if not isinstance(other, _StaticExplicitDeferredTensorState):
      return False
    if self.auto_cast != other.auto_cast:
      return False

    # If at least one of the objects is a Tensor, then we check that they're the
    # same object, instead of calling __eq__.
    #
    # In eager mode, we could potentially check for value-equality, by using the
    # np.array_equal() code below after *explicitly* casting the Tensors to
    # numpy arrays by calling Tensor.numpy(). This would probably be a bad idea,
    # though, since if the Tensor is actually a tf.Variable, its value could
    # change in the future.
    if tf.is_tensor(self.value) or tf.is_tensor(other.value):
      return self.value is other.value

    # Every other allowed type can be handled by numpy.
    #
    # We can hope that in most cases, this will be quick (e.g. same object -->
    # equal, different shapes --> unequal), but if we're unlucky, this has the
    # potential to be slow.
    return np.array_equal(self.value, other.value) 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:25,代碼來源:deferred_tensor.py

示例4: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def __init__(self, bits=8, stochastic=True):
    """Initializer for the PerChannelUniformQuantizationEncodingStage.

    Args:
      bits: The number of bits to quantize to. Must be an integer between 1 and
        16. Can be either a TensorFlow or a Python value.
      stochastic: A Python bool, whether to use stochastic or deterministic
        rounding. If `True`, the encoding is randomized and on expectation
        unbiased. If `False`, the encoding is deterministic.

    Raises:
      ValueError: The inputs do not satisfy the above constraints.
    """
    if (not tf.is_tensor(bits) and bits not in self._ALLOWED_BITS_ARG):
      raise ValueError('The bits argument must be an integer between 1 and 16.')
    self._bits = bits

    if not isinstance(stochastic, bool):
      raise TypeError('The stochastic argument must be a bool.')
    self._stochastic = stochastic 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:22,代碼來源:quantization.py

示例5: static_or_dynamic_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def static_or_dynamic_shape(value):
  """Returns shape of the input `Tensor` or a `np.ndarray`.

  If `value` is a `np.ndarray` or a `Tensor` with statically known shape, it
  returns a Python object. Otherwise, returns result of `tf.shape(value)`.

  Args:
    value: A `Tensor` or a `np.ndarray` object.

  Returns:
    Static or dynamic shape of `value`.

  Raises:
    TypeError:
      If the input is not a `Tensor` or a `np.ndarray` object.
  """
  if tf.is_tensor(value):
    return value.shape if value.shape.is_fully_defined() else tf.shape(value)
  elif isinstance(value, np.ndarray):
    return value.shape
  else:
    raise TypeError('The provided input is not a Tensor or numpy array.') 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:24,代碼來源:py_utils.py

示例6: maybe_evaluate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def maybe_evaluate(self, fetches, session=None):
    """Evaluates `fetches`, if containing any `Tensor` objects.

    Args:
      fetches: Any nested structure compatible with `tf.nest`.
      session: Optional. A `tf.Session` object in the context of which the
        evaluation is to happen.

    Returns:
      `fetches` with any `Tensor` objects replaced by numpy values.
    """
    if any((tf.is_tensor(t) for t in tf.nest.flatten(fetches))):
      if session:
        fetches = session.run(fetches)
      else:
        fetches = self.evaluate(fetches)
    return fetches 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:19,代碼來源:test_utils.py

示例7: _decode_after_sum_impl

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def _decode_after_sum_impl(self, encoded_tensors, decode_params, num_summands,
                             shape):
    """Implementation for the `decode_after_sum` method."""
    if not self.stage.commutes_with_sum:
      # This should have been decoded earlier in the decode_before_sum method.
      assert tf.is_tensor(encoded_tensors)
      return encoded_tensors

    temp_encoded_tensors = {}
    for key, value in six.iteritems(encoded_tensors):
      if key in self.children:
        with tf.compat.v1.name_scope(None, '/'.join([self.stage.name, key])):
          temp_encoded_tensors[key] = self.children[key]._decode_after_sum_impl(  # pylint: disable=protected-access
              value, decode_params[EncoderKeys.CHILDREN][key], num_summands,
              shape[EncoderKeys.CHILDREN][key])
      else:
        temp_encoded_tensors[key] = value
    return self.stage.decode(temp_encoded_tensors,
                             decode_params[EncoderKeys.PARAMS],
                             num_summands=num_summands,
                             shape=shape[EncoderKeys.SHAPE]) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:23,代碼來源:core_encoder.py

示例8: _detokenize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def _detokenize(self, tokens, sequence_length):
    if isinstance(tokens, tf.RaggedTensor):
      rank = len(tokens.shape)
      if rank == 1:
        return self._detokenize_tensor(tokens.values)
      elif rank == 2:
        return self._detokenize_ragged_tensor(tokens)
      else:
        raise ValueError("Unsupported RaggedTensor rank %d for detokenization" % rank)
    elif tf.is_tensor(tokens):
      rank = len(tokens.shape)
      if rank == 1:
        return self._detokenize_tensor(tokens)
      elif rank == 2:
        if sequence_length is None:
          raise ValueError("sequence_length is required for Tensor detokenization")
        return self._detokenize_batch_tensor(tokens, sequence_length)
      else:
        raise ValueError("Unsupported tensor rank %d for detokenization" % rank)
    elif isinstance(tokens, list) and tokens and isinstance(tokens[0], list):
      return list(map(self.detokenize, tokens))
    else:
      tokens = [tf.compat.as_text(token) for token in tokens]
      return self._detokenize_string(tokens) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:26,代碼來源:tokenizer.py

示例9: assert_state_is_compatible

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def assert_state_is_compatible(expected_state, state):
  """Asserts that states are compatible.

  Args:
    expected_state: The reference state.
    state: The state that must be compatible with :obj:`expected_state`.

  Raises:
    ValueError: if the states are incompatible.
  """
  # Check structure compatibility.
  tf.nest.assert_same_structure(expected_state, state)

  # Check shape compatibility.
  expected_state_flat = tf.nest.flatten(expected_state)
  state_flat = tf.nest.flatten(state)

  for x, y in zip(expected_state_flat, state_flat):
    if tf.is_tensor(x):
      expected_depth = x.shape[-1]
      depth = y.shape[-1]
      if depth != expected_depth:
        raise ValueError("Tensor in state has shape %s which is incompatible "
                         "with the target shape %s" % (y.shape, x.shape)) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:26,代碼來源:bridge.py

示例10: is_scalar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def is_scalar(tensor):
  """Returns True iff the given tensor is a scalar.

  Args:
    tensor: The tensor to test for being a scalar.

  Returns:
    True if 'tensor' is a scalar, i.e. all dims are 1, False otherwise.

  Raises:
    TypeError: when the argument is not a tensor.
  """
  if not tf.is_tensor(tensor):
    raise TypeError('Expected a tensor, found "{}".'.format(
        py_typecheck.type_string(type(tensor))))
  return (hasattr(tensor, 'get_shape') and
          all(dim == 1 for dim in tensor.get_shape())) 
開發者ID:tensorflow,項目名稱:federated,代碼行數:19,代碼來源:tensor_utils.py

示例11: state_aegmm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def state_aegmm(od: OutlierAEGMM) -> Dict:
    """
    OutlierAEGMM parameters to save.

    Parameters
    ----------
    od
        Outlier detector object.
    """
    if not all(tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov]):
        logger.warning('Saving AEGMM detector that has not been fit.')

    state_dict = {'threshold': od.threshold,
                  'n_gmm': od.aegmm.n_gmm,
                  'recon_features': od.aegmm.recon_features,
                  'phi': od.phi,
                  'mu': od.mu,
                  'cov': od.cov,
                  'L': od.L,
                  'log_det_cov': od.log_det_cov}
    return state_dict 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:23,代碼來源:saving.py

示例12: state_vaegmm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def state_vaegmm(od: OutlierVAEGMM) -> Dict:
    """
    OutlierVAEGMM parameters to save.

    Parameters
    ----------
    od
        Outlier detector object.
    """
    if not all(tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov]):
        logger.warning('Saving VAEGMM detector that has not been fit.')

    state_dict = {'threshold': od.threshold,
                  'samples': od.samples,
                  'n_gmm': od.vaegmm.n_gmm,
                  'latent_dim': od.vaegmm.latent_dim,
                  'beta': od.vaegmm.beta,
                  'recon_features': od.vaegmm.recon_features,
                  'phi': od.phi,
                  'mu': od.mu,
                  'cov': od.cov,
                  'L': od.L,
                  'log_det_cov': od.log_det_cov}
    return state_dict 
開發者ID:SeldonIO,項目名稱:alibi-detect,代碼行數:26,代碼來源:saving.py

示例13: run

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def run(self, tensor, feed_dict=None):
    """Evaluates the given `Tensor`.

    Unlike `tf.Session.run()`, this method expects a single `Tensor` argument
    (i.e. not a list of `Tensor`s or any other more complex structure).

    Args:
      tensor: the `Tensor` to evaluate, or a nullary function returning a
        `Tensor`.
      feed_dict: dict mapping placeholder `Tensor`s to their desired values.

    Returns:
      The value of the given `Tensor`.

    Raises:
      TypeError: if (i) the given tensor is neither a `Tensor` nor a nullary
        function returning a `Tensor`, or (ii) we're given a feed_dict but the
        tensor argument is not callable.
    """
    if callable(tensor):
      tensor = tensor()
    elif feed_dict:
      raise TypeError("if a feed_dict is provided to run(), then the tensor "
                      "argument must be a nullary function returning a Tensor")

    if not tf.is_tensor(tensor):
      raise TypeError("_GraphWrappedSession.run expects a Tensor argument, "
                      "or a nullary function returning a Tensor")

    return self._session.run(tensor, feed_dict=feed_dict) 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:32,代碼來源:graph_and_eager_test_case.py

示例14: get_num_columns_of_2d_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def get_num_columns_of_2d_tensor(tensor, name="tensor"):
  """Gets the number of columns of a rank-two `Tensor`.

  Args:
    tensor: a rank-2 `Tensor` with a known number of columns.
    name: str, how to refer to the tensor in error messages.

  Returns:
    The number of columns in the tensor.

  Raises:
    TypeError: if "tensor" is not a `Tensor`.
    ValueError: if "tensor" is not a rank-2 `Tensor` with a known number of
      columns.
  """
  if not tf.is_tensor(tensor):
    raise TypeError("%s must be a Tensor" % name)

  dims = tensor.shape.dims
  if dims is None:
    raise ValueError("%s must have a known rank" % name)
  if len(dims) != 2:
    raise ValueError("%s must be rank 2 (it is rank %d)" % (name, len(dims)))

  columns = dims[1].value
  if columns is None:
    raise ValueError("%s must have a known number of columns" % name)

  return columns 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:31,代碼來源:helpers.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_tensor [as 別名]
def __init__(self, bits=8, min_max=None, stochastic=True):
    """Initializer for the UniformQuantizationEncodingStage.

    Args:
      bits: The number of bits to quantize to. Must be an integer between 1 and
        16. Can be either a TensorFlow or a Python value.
      min_max: A range to be used for quantization. If `None`, the range of the
        vector to be encoded will be used. If provided, must be an array of 2
        elements, corresponding to the min and max value, respectively. Can be
        either a TensorFlow or a Python value.
      stochastic: A Python bool, whether to use stochastic or deterministic
        rounding. If `True`, the encoding is randomized and on expectation
        unbiased. If `False`, the encoding is deterministic.

    Raises:
      ValueError: The inputs do not satisfy the above constraints.
    """
    if (not tf.is_tensor(bits) and bits not in self._ALLOWED_BITS_ARG):
      raise ValueError('The bits argument must be an integer between 1 and 16.')
    self._bits = bits

    if min_max is not None:
      if tf.is_tensor(min_max):
        if min_max.shape.as_list() != [2]:
          raise ValueError(
              'The min_max argument must be Tensor with shape (2).')
      else:
        if not isinstance(min_max, list) or len(min_max) != 2:
          raise ValueError(
              'The min_max argument must be a list with two elements.')
        if min_max[0] >= min_max[1]:
          raise ValueError('The first element of the min_max argument must be '
                           'smaller than the second element.')
    self._min_max = min_max

    if not isinstance(stochastic, bool):
      raise TypeError('The stochastic argument must be a bool.')
    self._stochastic = stochastic 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:40,代碼來源:stages_impl.py


注:本文中的tensorflow.is_tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。